Exact solution of the Ising Model

Onsager solved the Ising model analytically through a fantastic application of mathematical physics.

Energy

\begin{displaymath}
E = - N_s J \coth(2J) \left[ 1 + \frac{2}{\pi} \kappa' K_1(\kappa) \right]
\end{displaymath}

Magnetization

\begin{displaymath}
M = \pm N_s \frac{ ( 1+z^2)^{1/4} (1-6 z^2 + z^4 )^{1/8} }
{ ( 1-z^2)^{1/2} }
\end{displaymath}

Specific heat

\begin{displaymath}
C_B = N_s \frac{2}{\pi} ( J \coth(2J) )^2 \left(
2 K_1(\ka...
...)
\left[ \frac{\pi}{2} + \kappa' K_1(\kappa) \right]
\right)
\end{displaymath}

$z$, $\kappa$ and $\kappa'$ are

\begin{displaymath}
z = exp(- 2 J)
\end{displaymath}


\begin{displaymath}
\kappa = 2 \frac{ \sinh(2 J ) } { \cosh^2( 2 J ) }
\end{displaymath}


\begin{displaymath}
\kappa' = 2 \tanh^2( 2 J ) - 1
\end{displaymath}

The elliptic functions are

\begin{displaymath}
K_1(\kappa) \equiv \int_{0}^{\pi/2} \frac{ d \phi }
{ ( 1 - \kappa^2 \sin^2( \phi) )^{1/2} }
\end{displaymath}


\begin{displaymath}
E_1(\kappa) \equiv \int_{0}^{\pi/2} d \phi
( 1 - \kappa^2 \sin^2( \phi) )^{1/2}
\end{displaymath}

The analytical solution of the model in 3D is not known, and it may be impossible to derive.



Michel Vallieres 2014-04-01