Courant Condition

The constant in the finite difference wave equation,

\begin{displaymath}
\frac{\rho}{T} \frac{1}{c^2} \frac{\Delta_t^2 }{\Delta_x^2 } =
\frac{c^2}{c'^2}
\end{displaymath} (9)

where

\begin{displaymath}
c = \frac{ \rho}{ T }
\end{displaymath} (10)

and
\begin{displaymath}
c' = \frac{ \Delta_x}{ \Delta_t }
\end{displaymath} (11)

.

It can be shown that the Courant Condition, $ c < c' = \Delta_x / \Delta_t $ limits constants values that allow stable solutions. More accuurate solutions will result from smaller $\Delta_x$ and $\Delta_t$ provided the Courrant Condition applies.



2015-01-28