next up previous
Next: Quantization of an electromagnetic Up: A Brief Introduction to Previous: Potential Equations Maxwell's Equation.

Gauges

Equations 1.1,1.2 are not unique. Suppose $ A'=A + a$ and $ V'=V+b$, we do not violate Maxwell's equations if

$\displaystyle \nabla \times a = 0 \ \Rightarrow a \ = \nabla \lambda$

and

$\displaystyle \nabla b + \frac{\partial a}{\partial t} = 0 \ \ni \nabla \left( ...
...\ \Rightarrow \ b + \frac{\partial \lambda}{\partial t} = f(t), \ \nabla f = 0.$

Typically one redefines $ \lambda \rightarrow \lambda + \int_0^t f(t')dt'$, returning the general gauge transform,
$\displaystyle A'$ $\displaystyle =$ $\displaystyle A+\nabla \lambda$ (2.1)
$\displaystyle V'$ $\displaystyle =$ $\displaystyle V - \frac{\partial \lambda}{\partial t}$ (2.2)

Two common gauges are the Coulomb and Lorenz. The Coulomb gauge has us take $ \lambda$ so that $ \nabla \cdot A = 0$. Thus Equation 1.1 simplifies to a harmonic equation:

$\displaystyle \nabla^2V = -\frac{\rho}{\epsilon_0} \ \ni \ V(r,t)=\frac{1}{4\pi \epsilon_0}\int \frac{\rho(r',t)}{\vert r-r'\vert}d\tau'$

Unfortunately this does not do much to simplify the defining equation for the vector potential,

$\displaystyle \nabla^2A -\mu_0\epsilon_0 \frac{\partial^2 A}{\partial t^2}=-\mu_0 J + \mu_0 \epsilon_0 \nabla\left(\frac{\partial V}{\partial t}\right)$

The Lorenz gauge has us chose $ \nabla \cdot A + \mu_0\epsilon_0 \frac{\partial V}{\partial t} = 0$. Define the d'Alembertian as $ \nabla^2 - \mu_0 \epsilon_0 \frac{\partial^2}{\partial t^2} \equiv \Box$. Then the Lorenz gauge reduces the potential equations to
$\displaystyle \Box^2 V$ $\displaystyle =$ $\displaystyle -\frac{\rho}{\epsilon_0}$ (2.3)
$\displaystyle \Box^2 A$ $\displaystyle =$ $\displaystyle -\mu_0 J$ (2.4)


next up previous
Next: Quantization of an electromagnetic Up: A Brief Introduction to Previous: Potential Equations Maxwell's Equation.
Timothy Jones 2006-05-30