next up previous
Next: Gauges Up: A Brief Introduction to Previous: A Brief Introduction to

Potential Equations $ \leftrightarrow $ Maxwell's Equation.

In Lorenz's paper [1] he begins with scaler and vector potentials (in retarded from) and derives Maxwell's equations from these equations. Typically, texts start with Maxwell's equations and develop the Lorenz Gauge [2,3] which has the benefit of seeming less ad hoc. Here we present a graphical representation of the development.

We begin with the Maxwell equations in general form,

$\displaystyle \nabla \cdot E = \frac{\rho}{\epsilon_0}$   $\displaystyle \qquad \nabla \times E = -\frac{\partial B}{\partial t}$  
$\displaystyle \nabla \cdot B = 0$   $\displaystyle \qquad \nabla \times B = \mu_0J+\mu_0\epsilon_0\frac{\partial E}{\partial t}$  

We note that

$\displaystyle \nabla \cdot B = 0 \ \Rightarrow \ B \equiv \nabla \times A \ni \nabla \times E = -\frac{\partial}{\partial t}(\nabla \times A)$

% latex2html id marker 607
$\displaystyle \therefore \nabla \times \left(E+\fra...
...}{\partial t} = -\nabla V \ \ni \ E = -\nabla V - \frac{\partial A}{\partial t}$

$\displaystyle \ni \ \nabla \cdot E = \frac{\rho}{\epsilon_0} \ \rightarrow $

$\displaystyle \nabla^2V + \frac{\partial}{\partial t}(\nabla \cdot A)=-\frac{\rho}{\epsilon_0}$ (1.1)

Finally we note that

$\displaystyle \nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\p...
...artial V}{\partial t}\right) - \mu_0\epsilon_0 \frac{\partial^2A}{\partial t^2}$

Since

$\displaystyle \nabla \times (\nabla \times A) = \partial_j\epsilon_{ijk}(\parti...
...\partial_j\epsilon_{ijk}(\partial_j A_i) = \nabla(\nabla \cdot A) - \nabla^2 A,$

we have

$\displaystyle \left(\nabla^2A -\mu_0\epsilon_0 \frac{\partial^2A}{\partial t^2}...
...abla \cdot A + \mu_0 \epsilon_0 \frac{\partial V}{\partial t}\right) = -\mu_0 J$ (1.2)

Figure 1.1: Maxwell's Equations $ \leftrightarrow $ Potential Equations
\includegraphics[width=10cm]{fig.ps}


next up previous
Next: Gauges Up: A Brief Introduction to Previous: A Brief Introduction to
Timothy Jones 2006-05-30