next up previous
Next: Bibliography Up: Algebraic solution Previous: Algebraic solution

Fock states and a more mature development of the algebraic solution

A more canonical approach to the previous section is as follows. We write the Hamiltonian as

$\displaystyle H = \frac{1}{2m}P^2 + \frac{m\omega^2}{2}Q^2$ (4.6)

This can be written dimensionlessly with the introduction of substitute operators,
$\displaystyle q=\sqrt{\frac{m\omega}{\hbar}}Q$     (4.7)
$\displaystyle p=\sqrt{\frac{1}{m\hbar \omega}}P$     (4.8)
$\displaystyle H = \frac{\hbar \omega}{2}(p^2 + q^2)$     (4.9)

In parallel with the previous section, we consider the operators,

$\displaystyle a=\frac{q+ip}{\sqrt{2}}$     (4.10)
$\displaystyle a^{\dagger}=\frac{q - ip}{\sqrt{2}}$     (4.11)
$\displaystyle H = \frac{\hbar \omega}{2}(aa^{\dagger}+a^{\dagger}a)$     (4.12)

From basic quantum mechanics we know that $ [Q,P]=i\hbar$, thus $ [q,p]=i$, and so $ [a,a^{\dagger}]=1$, whereby

$\displaystyle H = \frac{1}{2}\hbar \omega(aa^{\dagger} + a^{\dagger}a)=\hbar\omega(aa^{\dagger} - \frac{1}{2}) = \hbar \omega (a^{\dagger}a + \frac{1}{2})$ (4.13)

The Hamiltonian thus shares its eigenvalue spectrum with $ N=a^{\dagger}a$, and

$\displaystyle [N,a] = a^{\dagger}aa - aa^{\dagger}a=[a^{\dagger},a]a=-a$ (4.14)

$\displaystyle [N,a^{\dagger}]= a^{\dagger}aa^{\dagger} - a^{\dagger}a^{\dagger}a=a^{\dagger}[a,a^{\dagger}]=a^{\dagger}$ (4.15)

Thus we find,
$\displaystyle N\vert n\rangle=n\vert n\rangle \ \Longrightarrow Na\vert n\rangle =a(N-1)\vert n\rangle = (n-1)a\vert n\rangle$     (4.16)
$\displaystyle Na^b\vert n\rangle=(n-b)a^b\vert n\rangle$     (4.17)

Thus $ a^b\vert n\rangle$ is an eigenvector of N with eigenvalues $ n-b$. We require these eigenvalues be positive for the following reason. An operator is required to have a real expectation value since the expectation value is what we would measure, i.e. we require that for an operator R,

$\displaystyle \langle\psi\vert R\vert\psi\rangle=\langle\psi\vert R\vert\psi\rangle^*$

This implies R is Hermitian, and given $ R\vert\psi\rangle = r\vert\psi\rangle$ then we have,

$\displaystyle \langle\psi\vert R\vert\psi\rangle=r\langle\psi\vert\psi\rangle=\langle\psi\vert R\vert\psi\rangle^*=r^*\langle\psi\vert\psi\rangle$

Since the eigenvalues are real, then the squared norm of these eigenvectors follow the form:

$\displaystyle (\langle n\vert a^{\dagger})(a\vert n\rangle)=\langle n \vert N \vert n \rangle = n\langle n \vert n \rangle \geq 0$ (4.18)

and so we conclude that there must be a $ n-b=0$ cutoff

As well,

$\displaystyle Na^{\dagger}\vert n\rangle = a^{\dagger}(N+1)\vert n\rangle = (n+1)a^{\dagger}\vert n\rangle$     (4.19)
$\displaystyle (\langle n \vert a)(a^{\dagger}\vert n\rangle)=(n+1)\langle n \vert n \rangle$     (4.20)

We compare equation 22 with the fact that $ N\vert n+1\rangle = (n+1)\vert n+1\rangle$ and conclude that

% latex2html id marker 1694
$\displaystyle a^{\dagger}\vert n\rangle = \beth \v...
...le)=(n+1) \ \therefore \ a^{\dagger}\vert n\rangle = \sqrt{n+1}\vert n+1\rangle$ (4.21)

A similar argument yields $ a\vert n\rangle = \sqrt{n}\vert n-1\rangle$. It follows that

$\displaystyle \vert n\rangle=\frac{a^{\dagger}^n\vert\rangle}{\sqrt{n!}}$ (4.22)

These are the so-called Fock states.


next up previous
Next: Bibliography Up: Algebraic solution Previous: Algebraic solution
Timothy D. Jones 2007-01-29