next up previous
Next: Fock states and a Up: The Hermite Polynomial & Previous: The Spherical Harmonic Oscillator

Algebraic solution

The time independent Schrödinger equation for this first order potential approximation is:
$\displaystyle -\frac{\hbar}{2m}\frac{d^2\psi}{dx^2} + \frac{1}{2}m\omega^2x^2\psi = E \psi$      
$\displaystyle \frac{1}{2m}\left(\left(\frac{\hbar}{i}\frac{d}{dx}\right)^2 + (m\omega x)^2\right)\psi = E \psi$      
$\displaystyle \frac{1}{2m}\left(\left(\frac{h}{i}\frac{d}{dx}-im\omega x\right)...
...frac{h}{i}\frac{d}{dx}+im\omega x\right)-\frac{\hbar\omega}{2}\right)\psi=E\psi$      
$\displaystyle \left(a_-a_+ - \frac{\hbar \omega}{2}\right)\psi = E \psi$     (4.1)

Here we have:

$\displaystyle a_{\pm}=\frac{1}{\sqrt{2m}}\left(\frac{h}{i}\frac{d}{dx}\pm im\omega x\right)$ (4.2)

It is easy to show that $ a_-a_+ - a_+a_- = \hbar \omega$, and as well, we have:

$\displaystyle \left(a_+a_- + \frac{\hbar \omega}{2}\right)\psi = E \psi$ (4.3)

We now introduce the following chain of logic:
$\displaystyle \left(a_+a_- + \frac{\hbar\omega}{2}\right)(a_+\psi)=(a_+a_-a_+ + \frac{\hbar\omega a_+}{2})\psi$      
$\displaystyle =a_+\left((a_-a_+ - \frac{\hbar \omega}{2})\psi+ \hbar\omega\psi\right)
=(E+\hbar\omega)(a_+\psi)$      
% latex2html id marker 1605
$\displaystyle \therefore \left(a_+a_- + \frac{\hbar\omega}{2}\right)(a_+\psi)=(E+\hbar\omega)(a_+\psi)$      
As well,$\displaystyle \ \ \left(a_-a_+-\frac{\hbar \omega}{2}\right)(a_-\psi)=(E-\hbar\omega)(a_-\psi)$     (4.4)

It is now obvious to see why $ a_+$ is called the raising operator and $ a_-$ is called the lowering operator. We do of course require a minimum lowering, a ground level. This requirement puts upon us that $ \exists \ \psi_o \ \ni \ a_-\psi_o = 0 \Longrightarrow
\psi_o(x)=A_oe^{-\frac{m\omega}{2\hbar}x^2}$. We finally conclude that $ E_o =
\hbar\omega/2$, and

$\displaystyle \psi_n(x)=A_n(a_+)^ne^{-\frac{m\omega}{2\hbar}x^2}, \ \ E_n=(n+1/2)\hbar\omega$ (4.5)



Subsections
next up previous
Next: Fock states and a Up: The Hermite Polynomial & Previous: The Spherical Harmonic Oscillator
Timothy D. Jones 2007-01-29