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Figure 19.1.1. Representation of the Forward Time Centered Space (FTCS) differencing scheme. In this
and subsequent figures, the open circle is the new point at which the solution is desired: filled circles are
known points whose function values are used in calculating the new point; the solid lines connect points
that are used to calculate spatial derivatives: the dashed lines connect points that are used to calculate time
derivatives. The FTCS scheme is generally unstable for hyperbolic problems and cannot usually be used.

quantities at timestep n + 1 in terms of only quantities known at timestep n. For the
space derivative, we can use a second-order representation still using only quantities
known at timestep n:
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The resulting finite-difference approximation to equation (19.1.6) is called the FTCS
representation (Forward Time Centered Space),
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which can easily be rearranged to be a formula for U?H in terms of the other

quantities. The FTCS scheme is illustrated in Figure 19.1.1. It’s a fine example of
an algorithm that is easy to derive, takes little storage, and executes quickly. Too
bad it doesn’t work! (See below.)

The FTCS representation is an explicit scheme. This means that u?“ for each
j can be calculated explicitly from the quantities that are already known. Later we
shall meet implicit schemes, which require us to solve implicit equations coupling
the u;““l for various j. (Explicit and implicit methods for ordinary differential
equations were discussed in §16.6.) The FTCS algorithm is also an example of
a single-level scheme, since only values at time level n have to be stored to find
values at time level n + 1.

von Neumann Stability Analysis

Unfortunately, equation (19.1.11) is of very limited usefulness. It is an unstable
method, which can be used only (if at all) to study waves for a short fraction of one
oscillation period. To find alternative methods with more general applicability, we
must introduce the von Neumann stability analysis.

The von Neumann analysis is local: We imagine that the coefficients of the
difference equations are so slowly varying as to be considered constant in space
and time. In that case, the independent solutions, or eigenmodes, of the difference
equations are all of the form
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Figure 19.1.2. Representation of the Lax differencing scheme, as in the previous figure. The stability
criterion for this scheme is the Courant condition.

where k is a real spatial wave number (which can have any value) and & = £(k) is
a complex number that depends on k. The key fact is that the time dependence of
a single eigenmode is nothing more than successive integer powers of the complex
number &. Therefore, the difference equations are unstable (have exponentially
growing modes) if [£(k)| > 1 for some k. The number ¢ is called the amplification
factor at a given wave number k.

To find £(k), we simply substitute (19.1.12) back into (19.1.11). Dividing
by &", we get
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whose modulus is > 1 for all k; so the FTCS scheme is unconditionally unstable.

If the velocity v were a function of ¢ and z, then we would write v} in equation
(19.1.11). In the von Neumann stability analysis we would still treat v as a constant,
the idea being that for v slowly varying the analysis is local. In fact, even in the
case of strictly constant v, the von Neumann analysis does not rigorously treat the
end effects at j = 0 and j = V.

More generally, if the equation’s right-hand side were nonlinear in u, then a
von Neumann analysis would linearize by writing u = up + du, expanding to linear
order in du. Assuming that the uo quantities already satisfy the difference equation
exactly, the analysis would look for an unstable eigenmode of du.

Despite its lack of rigor, the von Neumann method generally gives valid answers
and is much easier to apply than more careful methods. We accordingly adopt it
exclusively. (See, for example, [1] for a discussion of other methods of stability
analysis.)

Lax Method

The instability in the FTCS method can be cured by a simple change due to Lax.
One replaces the term v in the time derivative term by its average (Figure 19.1.2):
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This turns (19.1.11) into
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