
Solving tridiagonal matrix equations

In the fully implicit and semi-implicit solvers for the diffusion equation, the goal is to solve a tridiagonal
matrix equation of the form
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where the solution vector x is the new state of the system, xj = un+1
j and the vector r is constructed

from the unj . As already discussed, the top (b0, c0, and r0) and bottom (aJ−1, bJ−1, and rJ−1) rows
of the matrix are used to apply the boundary conditions of the diffusion problem.

There are several ways to solve this matrix equation. The first is to use brute force and apply the
solve function in scipy.linalg:

from scipy.linalg import solve

x = solve(A, r)

This will work, and may even run quite quickly given that most of the elements of A are zero (and
the solver likely works by reducing A to triangular form and solving by back-substitution). However,
the storage of the matrix A is very wasteful of space (it has J2 entries, but only 3J − 2 of them are
nonzero) and can easily consume a lot of memory if J is large.

An alternative is to convert to triangular form and solve by back-substitution “by hand,” as
implemented in the script tridiag.py (available on the course web page), adapted from the Numerical
Recipes function of the same name:

x = tridiag(a, b, c, r)

A tridiagonal system is so close to triangular that the operations are simple to code and require only
O(J) memory and computational cost.

If you prefer to use Python built-ins, you can use the scipy function solve banded, which is
designed to solve “banded” matrices having some number of contiguous non-zero off-diagonal elements:

from scipy.linalg import solve_banded

x = solve_banded((1,1), Ab, r)

Here, the leading (1, 1) specifies the number of nonzero off-diagonal vectors below and above the
diagonal and the 3 × J matrix Ab stores the nonzero data:

Ab =

 − c0 c1 c2 · · · cJ−3 cJ−2

b0 b1 b2 b3 · · · bJ−2 bJ−1

a1 a2 a3 a4 · · · aJ−1 −

 .

The dashes indicate elements that are not used by the solver, and can safely be set to zero. We can
easily create this array in numpy as follows:

Ab = np.zeros((3,J))

Ab[0,1:] = c[:-1]

Ab[1,:] = b

Ab[2,:-1] = a[1:]


