
Differencing the Time-Dependent Schrödinger Equation

Now let’s turn to the problem of solving the time-dependent Schrödinger equation:
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Its form is basically that of the diffusion equation, except that the coefficients are complex and
there is an additional “V ψ” term on the right-hand side. The Crank-Nicolson scheme is still the
method of choice. What’s more, it can be shown that the Crank-Nicolson map from time n to time
n+ 1 is unitary, so it preserves the normalization of ψ:∫

ψ∗ψ dx = 1 .

As before, we derive the Crank-Nicolson differencing scheme by averaging together the fully
explicit and fully implicit difference forms of the differential equation:
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where Vj = V (xj). Averaging and rearranging, we find
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where α = h̄∆t/(2m∆x2). Moving the unknown “n+ 1” terms to the left-hand side, we have

−1
2 iαψ

n+1
j−1 +

[
1 + iα+ 1

2 iVj∆t/h̄
]
ψn+1
j − 1

2 iαψ
n+1
j+1

= 1
2 iαψ

n
j−1 +

[
1 − iα− 1

2 iVj∆t/h̄
]
ψn
j + 1

2 iαψ
n
j+1 .

This complex matrix equation is then solved in exactly the same way as before.


