Mean and variance of a random walk

A random walk {z"} is the sum of a series of random steps:
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where the steps dz; are uncorrelated and drawn from the same probability distribution, independent
of i. For the symmetric walk considered here, the distribution is simply that dx = Az, with
probability % for each outcome.

We can easily calculate the expectation value and variance of x,:
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where we have used the fact that (dz;6z;) = Ax24;;, since the steps are uncorrelated.

Thus, if we average over an ensemble of walkers, the distribution should have zero mean and
will spread out with rms width proportional to \/n. In fact, it can be shown that, as the number
of walkers increases, the distribution is gaussian.



