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Figure 19.1.2. Representation of the Lax differencing scheme, as in the previous figure. The stability
criterion for this scheme is the Courant condition.

where k is a real spatial wave number (which can have any value) and & = £(k) is
a complex number that depends on k. The key fact is that the time dependence of
a single eigenmode is nothing more than successive integer powers of the complex
number &. Therefore, the difference equations are unstable (have exponentially
growing modes) if [£(k)| > 1 for some k. The number ¢ is called the amplification
factor at a given wave number k.

To find £(k), we simply substitute (19.1.12) back into (19.1.11). Dividing
by &", we get
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whose modulus is > 1 for all k; so the FTCS scheme is unconditionally unstable.

If the velocity v were a function of ¢ and z, then we would write v} in equation
(19.1.11). In the von Neumann stability analysis we would still treat v as a constant,
the idea being that for v slowly varying the analysis is local. In fact, even in the
case of strictly constant v, the von Neumann analysis does not rigorously treat the
end effects at j = 0 and j = V.

More generally, if the equation’s right-hand side were nonlinear in u, then a
von Neumann analysis would linearize by writing u = up + du, expanding to linear
order in du. Assuming that the uo quantities already satisfy the difference equation
exactly, the analysis would look for an unstable eigenmode of du.

Despite its lack of rigor, the von Neumann method generally gives valid answers
and is much easier to apply than more careful methods. We accordingly adopt it
exclusively. (See, for example, [1] for a discussion of other methods of stability
analysis.)

Lax Method

The instability in the FTCS method can be cured by a simple change due to Lax.
One replaces the term v in the time derivative term by its average (Figure 19.1.2):
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This turns (19.1.11) into

’PH:l " vAt ,

it =2 (e i) = o (W — i) (19.1.15)



838 Chapter 19.  Partial Differential Equations

stable unstable

torn

xorj

(2) (b)

Figure 19.1.3. Courant condition for stability of a differencing scheme. The solution of a hyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (19.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

Substituting equation (19.1.12), we find for the amplification factor
At
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The stability condition |¢]? < 1 leads to the requirement
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This is the famous Courant-Friedrichs-Lewy stability criterion, often
called simply the Courant condition. Intuitively, the stability condition can be
understood as follows (Figure 19.1.3): The quantity u?“ in equation (19.1.15) is
computed from information at points j — 1 and j + 1 at time n. In other words,
x;_1 and x; are the boundaries of the spatial region that is allowed to communicate
information to ug‘H. Now recall that in the continuum wave equation, information
actually propagates with a maximum velocity v. If the point u?“ is outside of
the shaded region in Figure 19.1.3, then it requires information from points more
distant than the differencing scheme allows. Lack of that information gives rise to
an instability. Therefore, At cannot be made too large.

The surprising result, that the simple replacement (19.1.14) stabilizes the FTCS
scheme, is our first encounter with the fact that differencing PDEs is an art as much
as a science. To see if we can demystify the art somewhat, let us compare the FTCS
and Lax schemes by rewriting equation (19.1.15) so that it is in the form of equation

(19.1.11) with a remainder term:
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But this is exactly the FTCS representation of the equation
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where V2 = 92 /922 in one dimension. We have, in effect, added a diffusion term to
the equation, or, if you recall the form of the Navier-Stokes equation for viscous fluid
flow, a dissipative term. The Lax scheme is thus said to have numerical dissipation,
or numerical viscosity. We can see this also in the amplification factor. Unless |v|At
is exactly equal to Az, |¢| < 1 and the amplitude of the wave decreases spuriously.
Isn’t a spurious decrease as bad as a spurious increase? No. The scales that we
hope to study accurately are those that encompass many grid points, so that they have
kAx < 1. (The spatial wave number k is defined by equation 19.1.12.) For these
scales, the amplification factor can be seen to be very close to one, in both the stable
and unstable schemes. The stable and unstable schemes are therefore about equally
accurate. For the unstable scheme, however, short scales with kAxz ~ 1, which we
are not interested in, will blow up and swamp the interesting part of the solution.
Much better to have a stable scheme in which these short wavelengths die away
innocuously. Both the stable and the unstable schemes are inaccurate for these short
wavelengths, but the inaccuracy is of a tolerable character when the scheme is stable.
When the independent variable u is a vector, then the von Neumann analysis
is slightly more complicated. For example, we can consider equation (19.1.3),

rewritten as
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The Lax method for this equation is
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The von Neumann stability analysis now proceeds by assuming that the eigenmode
is of the following (vector) form,
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Here the vector on the right-hand side is a constant (both in space and in time)
eigenvector, and ¢ is a complex number, as before. Substituting (19.1.22) into
(19.1.21), and dividing by the power £, gives the homogeneous vector equation
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This admits a solution only if the determinant of the matrix on the left vanishes, a
condition easily shown to yield the two roots &

(19.1.23)
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The stability condition is that both roots satisfy || < 1. This again turns out to be
simply the Courant condition (19.1.17).





