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Figure 19.1.5. Representation of the staggered leapfrog differencing scheme. Note that information
from two previous time slices is used in obtaining the desired point. This scheme is second-order
accurate in both space and time.

arrives at a given point after a time interval A¢. In the first-order method, the
material always arrives from Az away. If vAt < Az (to insure accuracy), this can
cause a large error. One way of reducing this error is to interpolate v between j — 1
and j before transporting it. This gives effectively a second-order method. Various
schemes for second-order upwind differencing are discussed and compared in [2-3].

Second-Order Accuracy in Time

When using a method that is first-order accurate in time but second-order
accurate in space, one generally has to take vAt significantly smaller than Az to
achieve desired accuracy, say, by at least a factor of 5. Thus the Courant condition
is not actually the limiting factor with such schemes in practice. However, there are
schemes that are second-order accurate in both space and time, and these can often be
pushed right to their stability limit, with correspondingly smaller computation times.

For example, the staggered leapfrog method for the conservation equation
(19.1.1) is defined as follows (Figure 19.1.5): Using the values of u" at time ",
compute the fluxes F}*. Then compute new values u™t! using the time-centered
values of the fluxes:

un—l—l - un—l o

At
; ; _A—x( - Fr) (19.1.30)
The name comes from the fact that the time levels in the time derivative term
“leapfrog” over the time levels in the space derivative term. The method requires
that v~ ! and u™ be stored to compute u™*!.

For our simple model equation (19.1.6), staggered leapfrog takes the form

ntl el vAL

up T g = (U — ) (19.1.31)

The von Neumann stability analysis now gives a quadratic equation for &, rather than
a linear one, because of the occurrence of three consecutive powers of £ when the
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form (19.1.12) for an eigenmode is substituted into equation (19.1.31),

A
2 1= —21‘51—t sin kA (19.1.32)
x
whose solution is
vAt vAt 2
_ _(vat 19.1.
¢ i AL sin kAx £ \/1 (AJ; 51nkA£) (19.1.33)

Thus the Courant condition is again required for stability. In fact, in equation
(19.1.33), |¢]? = 1 for any vAt < Ax. This is the great advantage of the staggered
leapfrog method: There is no amplitude dissipation.

Staggered leapfrog differencing of equations like (19.1.20) is most transparent
if the variables are centered on appropriate half-mesh points:

n
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This is purely a notational convenience: we can think of the mesh on which r and
s are defined as being twice as fine as the mesh on which the original variable u is
defined. The leapfrog differencing of equation (19.1.20) is

n+1 n+1/2 n+1/2
Tiv1/2 ~ Tie1/ _ S+ TS5
At Ax
w2 etz (19.1.35)
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If you substitute equation (19.1.22) in equation (19.1.35), you will find that once
again the Courant condition is required for stability, and that there is no amplitude
dissipation when it is satisfied.

If we substitute equation (19.1.34) in equation (19.1.35), we find that equation
(19.1.35) is equivalent to

un 2u —|—u” L 2u +u
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This is just the “usual” second-order differencing of the wave equation (19.1.2). We
see that it is a two-level scheme, requiring both 4™ and ©™~! to obtain u™*!. In
equation (19.1.35) this shows up as both s*~1/2 and r™ being needed to advance
the solution.

For equations more complicated than our simple model equation, especially
nonlinear equations, the leapfrog method usually becomes unstable when the gradi-
ents get large. The instability is related to the fact that odd and even mesh points are
completely decoupled, like the black and white squares of a chess board, as shown
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Figure 19.1.6.  Origin of mesh-drift instabilities in a staggered leapfrog scheme. If the mesh points
are imagined to lie in the squares of a chess board, then white squares couple to themselves, black to
themselves, but there is no coupling between white and black. The fix is to introduce a small diffusive
mesh-coupling piece.

in Figure 19.1.6. This mesh drifting instability is cured by coupling the two meshes
through a numerical viscosity term, e.g., adding to the right side of (19.1.31) a small
coefficient (< 1) times w7, — 2u} + uj_,. For more on stabilizing difference
schemes by adding numerical dissipation, see, e.g., [4].

The Two-Step Lax-Wendroff scheme is a second-order in time method that
avoids large numerical dissipation and mesh drifting. One defines intermediate
values u; /o at the half timesteps ¢,,11/» and the half mesh points /5. These
are calculated by the Lax scheme:

nt1/2 1 At )
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Using these variables, one calculates the fluxes F;.:Lll/;

u?“ are calculated by the properly centered expression

Then the updated values

At ]
n+1 n n+1/2 n+1/2
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The provisional values uﬁrll //22 are now discarded. (See Figure 19.1.7.)

Let us investigate the stability of this method for our model advective equation,
where F' = vu. Substitute (19.1.37) in (19.1.38) to get

n n 1 n n
e e A R §a(uj+1 — uj)
(19.1.39)
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Figure 19.1.7. Representation of the two-step Lax-Wendroff differencing scheme. Two halfstep points
(®) are calculated by the Lax method. These, plus one of the original points, produce the new point via
staggered leapfrog. Halfstep points are used only temporarily and do not require storage allocation on the
grid. This scheme is second-order accurate in both space and time.

where
vAl

= — 19.1.40
a= ( )

Then
£ =1 —iasinkAz — o*(1 — cos kAz) (19.1.41)

SO

1€ =1 —a?(1 — a®)(1 — cos kAx)? (19.1.42)

The stability criterion |2 < 1 is therefore o? < 1, orvAt < Ax as usual.
Incidentally, you should not think that the Courant condition is the only stability
requirement that ever turns up in PDEs. It keeps doing so in our model examples
just because those examples are so simple in form. The method of analysis is,
however, general.

Except when o = 1, [£|? < 1in (19.1.42), so some amplitude damping does
occur. The effect is relatively small, however, for wavelengths large compared with
the mesh size Azx. If we expand (19.1.42) for small kAx, we find

(kAx)?

2 =121~ a?) =5

(19.1.43)

The departure from unity occurs only at fourth order in k. This should be contrasted
with equation (19.1.16) for the Lax method, which shows that

€ =1—- (1 —a?)(kAz)* + ... (19.1.44)

for small kAz.





