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engineering; these methods allow considerable freedom in putting computational
elements where you want them, important when dealing with highly irregular geome-
tries. Spectral methods [13-15] are preferred for very regular geometries and smooth
functions; they converge more rapidly than finite-difference methods (cf. §19.4), but
they do not work well for problems with discontinuities.
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19.1 Flux-Conservative Initial Value Problems
A large class of initial value (time-evolution) PDESs in one space dimension can
be cast into the form of a flux-conservative equation,

Ou  OF(u)
ot ox

(19.1.1)

where u and F are vectors, and where (in some cases) F may depend not only on u
but also on spatial derivatives of u. The vector F is called the conserved flux.

For example, the prototypical hyperbolic equation, the one-dimensional wave
equation with constant velocity of propagation v
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can be rewritten as a set of two first-order equations
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where
G
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In this case r and s become the two components of u, and the flux is given by
the linear matrix relation

F(u) = ( 0 0”) ‘u (19.1.5)
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(The physicist-reader may recognize equations (19.1.3) as analogous to Maxwell’s
equations for one-dimensional propagation of electromagnetic waves.)
We will consider, in this section, a prototypical example of the general flux-
conservative equation (19.1.1), namely the equation for a scalar u,
ou ou
— =—Uv— 19.1.6
ot ox ( )
with v a constant. As it happens, we already know analytically that the general
solution of this equation is a wave propagating in the positive z-direction,

u= f(x —vt) (19.1.7)

where f is an arbitrary function. However, the numerical strategies that we develop
will be equally applicable to the more general equations represented by (19.1.1). In
some contexts, equation (19.1.6) is called an advective equation, because the quantity
u is transported by a “fluid flow” with a velocity v.

How do we go about finite differencing equation (19.1.6) (or, analogously,
19.1.1)? The straightforward approach is to choose equally spaced points along both
the ¢- and x-axes. Thus denote

IL‘j:IL'O+jAZB, 7=0,1,...,J

19.1.8
tn = to + nAt, n=0,1,...,N ( )

Let u} denote u(t,, ;). We have several choices for representing the time

derivative term. The obvious way is to set

. n+1 n
ou U]‘ - uj
— = ——— + 0O(At 19.1.9
7 R VR (19.19)
This is called forward Euler differencing (cf. equation 16.1.1). While forward Euler
is only first-order accurate in A¢, it has the advantage that one is able to calculate
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Figure 19.1.1. Representation of the Forward Time Centered Space (FTCS) differencing scheme. In this
and subsequent figures, the open circle is the new point at which the solution is desired: filled circles are
known points whose function values are used in calculating the new point; the solid lines connect points
that are used to calculate spatial derivatives: the dashed lines connect points that are used to calculate time
derivatives. The FTCS scheme is generally unstable for hyperbolic problems and cannot usually be used.

quantities at timestep n + 1 in terms of only quantities known at timestep n. For the
space derivative, we can use a second-order representation still using only quantities
known at timestep n:
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The resulting finite-difference approximation to equation (19.1.6) is called the FTCS
representation (Forward Time Centered Space),

n+1 n n n
U — U u. —u”
J J j+1 7—1
- = | — 19.1.11
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which can easily be rearranged to be a formula for U?H in terms of the other

quantities. The FTCS scheme is illustrated in Figure 19.1.1. It’s a fine example of
an algorithm that is easy to derive, takes little storage, and executes quickly. Too
bad it doesn’t work! (See below.)

The FTCS representation is an explicit scheme. This means that u?“ for each
j can be calculated explicitly from the quantities that are already known. Later we
shall meet implicit schemes, which require us to solve implicit equations coupling
the u;““l for various j. (Explicit and implicit methods for ordinary differential
equations were discussed in §16.6.) The FTCS algorithm is also an example of
a single-level scheme, since only values at time level n have to be stored to find
values at time level n + 1.

von Neumann Stability Analysis

Unfortunately, equation (19.1.11) is of very limited usefulness. It is an unstable
method, which can be used only (if at all) to study waves for a short fraction of one
oscillation period. To find alternative methods with more general applicability, we
must introduce the von Neumann stability analysis.

The von Neumann analysis is local: We imagine that the coefficients of the
difference equations are so slowly varying as to be considered constant in space
and time. In that case, the independent solutions, or eigenmodes, of the difference
equations are all of the form

Ul = gneihife (19.1.12)





