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7.2 Transformation Method: Exponential and
Normal Deviates

In the previous section, we learned how to generate random deviates with
a uniform probability distribution, so that the probability of generating a number
between x and x + dz, denoted p(x)dzx, is given by

dr 0<z<1
dz = { 7.2.1
plz)de 0  otherwise ( )

The probability distribution p(x) is of course normalized, so that
/ p(z)de =1 (7.2.2)

Now suppose that we generate a uniform deviate x and then take some prescribed
function of it, y(x). The probability distribution of y, denoted p(y)dy, is determined
by the fundamental transformation law of probabilities, which is simply

lp(y)dy| = |p(x)dz| (7.2.3)
D) = plz) fj—;j (7.2.4)

Exponential Deviates

As an example, suppose that y(x) = —In(z), and that p(z) is as given by
equation (7.2.1) for a uniform deviate. Then

dx _
p(y)dy = ’dy' dy = e Vdy (7.2.5)

which is distributed exponentially. This exponential distribution occurs frequently

in real problems, usually as the distribution of waiting times between independent

Poisson-random events, for example the radioactive decay of nuclei. You can also

easily see (from 7.2.4) that the quantity 3/ has the probability distribution Ae =Y.
So we have

#include <math.h>

float expdev(long *idum)
Returns an exponentially distributed, positive, random deviate of unit mean, using
ranl(idum) as the source of uniform deviates.
{
float ranl(long *idum);
float dum;

do

dum=rani (idum) ;
while (dum == 0.0);
return -log(dum) ;
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Figure 7.2.1.  Transformation method for generating a random deviate y from a known probability
distribution p(y). The indefinite integral of p(y) must be known and invertible. A uniform deviate x is
chosen between 0 and 1. Its corresponding y on the definite-integral curve is the desired deviate.

Let’s see what is involved in using the above transformation method to generate
some arbitrary desired distribution of y’s, say one with p(y) = f(y) for some positive
function f whose integral is 1. (See Figure 7.2.1.) According to (7.2.4), we need
to solve the differential equation

dx

— = 7.2.6

e itl() (7.26)
But the solution of this is just # = F'(y), where F'(y) is the indefinite integral of
f(y). The desired transformation which takes a uniform deviate into one distributed
as f(y) is therefore

y(x) = F~(x) (7.2.7)

where F'~! is the inverse function to F'. Whether (7.2.7) is feasible to implement
depends on whether the inverse function of the integral of f(y) is itself feasible to
compute, either analytically or numerically. Sometimes it is, and sometimes it isn’t.

Incidentally, (7.2.7) has an immediate geometric interpretation: Since F'(y) is
the area under the probability curve to the left of y, (7.2.7) is just the prescription:
choose a uniform random x, then find the value y that has that fraction = of
probability area to its left, and return the value y.

Normal (Gaussian) Deviates

Transformation methods generalize to more than one dimension. If x1, s,
are random deviates with a joint probability distribution p(xq,zo,...)

dxidxy ..., and if y1,ys,... are each functions of all the x’s (same number of
y’s as x’s), then the joint probability distribution of the y’s is
o(x1, 29, ...
p(y1, Y2, ... )dyrdys . .. = p(x1, 22, .. .) ’M ’ dyrdys . .. (7.2.8)
Ny, Y2, )

where |9( )/9( )| is the Jacobian determinant of the x’s with respect to the y’s
(or reciprocal of the Jacobian determinant of the y’s with respect to the x’s).
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An important example of the use of (7.2.8) is the Box-Muller method for
generating random deviates with a normal (Gaussian) distribution,

1 .
Py)dy = —=c"" Pdy (7.29)

Consider the transformation between two uniform deviates on (0,1), x1, x5, and
two quantities ¥, Yo,

Y1 =+ —2Inx cos2mxy

(7.2.10)
Yo = v/ —2Inxq sin 27w,
Equivalently we can write
_ 1, 2
T = exp 2(y1 +Y3)
(7.2.11)
o 1 Y2
Ty = —arctan—
27 Y1
Now the Jacobian determinant can readily be calculated (try it!):
P 6I1 6271
—(?(1131,172) — gﬁ ? - _ [_1 e—yf/2] {Le—yg/ﬂ (7.2.12)
Myvy2) |52 G2 V2 V2

Since this is the product of a function of y, alone and a function of y; alone, we see
that each y is independently distributed according to the normal distribution (7.2.9).

One further trick is useful in applying (7.2.10). Suppose that, instead of picking
uniform deviates x1 and x5 in the unit square, we instead pick v; and vy as the
ordinate and abscissa of a random point inside the unit circle around the origin. Then
the sum of their squares, R? = v? 4v3 is a uniform deviate, which can be used for x1,
while the angle that (vq, v2) defines with respect to the v, axis can serve as the random
angle 2wxo. What’s the advantage? It’s that the cosine and sine in (7.2.10) can now
be written as v; /v/R2 and vy/v/R2, obviating the trigonometric function calls!

We thus have

#include <math.h>

float gasdev(long *idum)
Returns a normally distributed deviate with zero mean and unit variance, using ranl (idum)
as the source of uniform deviates.
{
float ranl(long *idum);
static int iset=0;
static float gset;
float fac,rsq,vl,v2;

if (*idum < 0) iset=0; Reinitialize.
if (iset == 0) { We don't have an extra deviate handy, so
do {
v1=2.0*ranl(idum)-1.0; pick two uniform numbers in the square ex-
v2=2.0*ranl(idum)-1.0; tending from -1 to +1 in each direction,

rsq=v1*v1+v2*v2; see if they are in the unit circle,



} while (rsq >= 1.0 || rsq == 0.0); and if they are not, try again.
fac=sqrt(-2.0%*log(rsq)/rsq);

Now make the Box-Muller transformation to get two normal deviates. Return one and
save the other for next time.

gset=vl*fac;

iset=1; Set flag.
return v2xfac;
} else { We have an extra deviate handy,
iset=0; so unset the flag,
return gset; and return it.

See Devroye [1] and Bratley [2] for many additional algorithms.
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