Characterizing Massive Star Feedback

Sean Lewis 06/15/20

Thesis Proposal

Star Formation: An Overview

Gaseous Environment

- Cold Neutral Medium (CNM)
 - 10 K; star-forming
- Warm Neutral Medium (WNM)
 - 10⁴ K
- Shocked Gas
 - $10^6 10^7 \text{ K}$
- Warm Ionized Medium (WIM)
 - 10⁴ K

Radiation & Winds

Ionizing radiation

Creates parsec-scale regions of ionized hydrogen. Destruction of dense CNM via photoevaporation. Strömgren Sphere

$$r_S = \left(\frac{3S\mu^2 m_H^2}{4(1.1)\pi\alpha_B\rho_0^2}\right)^{1/3} = 2.8S_{49}^{1/3}n_2^{-2/3} \text{pc}$$

Stellar Winds

- Deposit matter into surrounding medium
- Momentum injection comparable to radiation
- High velocity injection shocks surrounding gas to 1e6 – 1e7 K

Both are present throughout massive star's life.

Supernova

- Rapid ejection of matter up to 30,000 km/s
- Occur at least 3 Myr after onset of star formation event.
- Injection of high mass elements into interstellar medium.

Star Formation: An Overview

~10 Myr

The entire star formation process cannot be observed on a human timescale. How important are the feedback mechanisms?

My Research: Torch

FLASH

- Magnetohydrodynamics
- Radiation transfer
- Adaptive mesh refinement (AMR) grid simulation space
- Sink particles

AMUSE

- N-body dynamic solvers for star particles (ph4)
- Stellar evolution (SeBa)

Torch

• Python wrapper driving and communicating between the two.

My Research:

- CNM sphere $10^4\,M_\odot$
- Pressure equilibrium with WNM.
- Supersonic turbulence
- Refine on Jeans Length
 - Identify star forming regions: sink particles.

Star particles placed once sink particles accrete enough mass.

My Research: A Controlled Experiment

Three Simulations

- Identical cloud initial conditions.
- 8, 20, 50 solar mass stars are forced to begin forming at 1.32 Myr (0.43 global free-fall times).
- Each simulation evolves, placing the massive star, and the gas and star cluster dynamics can be examined.

Simulations: $50 M_{\odot}$

Simulations: $50 M_{\odot}$

Phase plots: 50 M_{\odot}

0.12 Myr after formation

Cold Neutral Medium

Warm Ionized Medium

Shocked gas

Free-flowing wind bubble

Simulations 20 M_{\odot}

Phase plots: 20 M_{\odot}

0.58 Myr after formation

Cold Neutral Medium

Warm Ionized Medium

Shocked gas

No resolved wind bubble

Simulations $8 M_{\odot}$

Phase plots: $8 M_{\odot}$

- No warm ionized medium
- No shocked gas
- No resolved wind bubble

Strömgren sphere ~1/10th of 1 grid cell.

Ultra compact HII region.

Expanding Analysis Further

- Time series analysis of gas ejection/inflow behavior.
- Fractional gas mass above/below density threshold.
- Quantify fraction of gas in CNM, WIM, Shocked phases.
- Analysis of stellar dynamics in most affected regions.

Timeline

Timeline

Timeline

- Continued collaborative efforts with graduate students and faculty.
- Moving into more responsible role as lead Torch user at Drexel.

Stellar Feedback

Massive stars are major players in the removal of gas.

 Radiation 	Present throughout star's life.
• Winds	Scale strongly with star mass.
• Supernova	Single event at t > 3 Myr.
•	Consistent over star mass range.

Radiation

Ionizing radiation

Creates parsec-scale regions of ionized hydrogen.

Penetrates into CNM.

Can limit star formation far from star.

Strömgren Sphere

$$r_S = \left(\frac{3S\mu^2 m_H^2}{4(1.1)\pi\alpha_B\rho_0^2}\right)^{1/3} = 2.8S_{49}^{1/3}n_2^{-2/3} \text{pc}$$

Winds

- Deposit matter into surrounding medium
- Momentum injection comparable to radiation
- High velocity injection shocks surrounding gas to 1e6 – 1e7 K

Stellar Feedback

- Role of stellar feedback is not well understood
 - Gas must be removed from clusters
 - But which mechanisms are important?
- 90% of local star clusters have been disrupted *before* gas-removal (Lada & Lada, 2003)
- Need to model massive star feedback, hydrodynamics of the gas, Nbody dynamics of the stars.

Prior Studies

- Kroupa 2001 examines cluster structure in radially AND time dependent potential mimicking the removal of gas via feedback
 - No self-consistent interaction between feedback and gas
- (Dale et al. 2012a, 2014) Ionization and Ionization + winds
 - No N-body, represents entire star clusters as a single particle
- Gonzales et al. 2020 models gas, stellar feedback AND forms individual stars from the gas but only M_{*} > 0.3 Msun

The 10 pc³ around the stars

Simulation	Change in Mass	Ionized material	Time after formation
$50 M_{\odot}$	-3.7% (15 ${\sf M}_{\odot}$)	11.4 % (46.0 ${\rm M}_{\odot})$	0.12 Myr
$20 \ M_{\odot}$	+12.7% (47.3 ${ m M}_{\odot}$)	0.46% (1.94 $M_{\odot})$	0.12 Myr
$8 M_{\odot}$	+ 4.5% (16.3 M $_{\odot}$)	0.027% (0.0096 $M_{\odot})$	0.12 Myr

Simulation	Change in Mass	Ionized material	Time after formation
$50 M_{\odot}$	-3.7% (15 ${\sf M}_{\odot}$)	11.4 % (46.0 ${\rm M}_{\odot}$)	0.12 Myr
$20 \ M_{\odot}$	+22.8% (84.9 ${\sf M}_{\odot}$)	1.76% (8.03 ${\rm M}_{\odot}$)	0.58 Myr
$8 M_{\odot}$	+ 79.8% (287.3 M _☉)	0.025% (0.015 $M_{\odot})$	1.12 Myr

Simulations: 8 M_☉

Simulations: $20 M_{\odot}$

Other

• PROFESS

$$\rho_{thresh} = \frac{\pi c_s^2}{G\lambda_J^2} = \frac{\pi c_s^2}{G(2*2.5\Delta x)^2}$$

5 nc^{\prime}	Simulation	Change in Mass	Ionization Mass	Time after formation
Jpc	50 Msun	-27.3 % (76.3 Msun)	12.1% (24.5 Msun)	123 kyr
• f	20 Msun	+ 9.4 % (24.3 Msun)	0.7 % (1.93 Msun)	123 kyr
I	8 Msun	+ 4.3 % (10.6 Msun)	0.024% (0.006 Msun)	123 kyr

Simulation	Change in Mass	Ionization Mass	Time after formation
50 Msun	-27.3 % (76.3 Msun)	12.1% (24.5 Msun)	123 kyr
20 Msun	+ 5.6 % (14.6 Msun)	2.62 % (7.16 Msun)	582 kyr
8 Msun	+ 78.4 % (191.8 Msun)	0.027% (0.012 Msun)	1120 kyr