next up previous
Next: Fractional order Up: Technical details Previous: Technical details

Integral order

We write the Mathieu equation as

$\displaystyle \frac{d^2y}{dz^2} + (a-2q\cos(2z))y=0$

And consider the case when $ q=0$ and write $ a=m^2$ and have solutions $ \pm \cos mz,  \pm \sin mz$ . We then suppose that the case when q is nonzero can be taken into account as a series based on this initial solution. Let

$\displaystyle a= 1 + \sum_{i=1}^{\infty}\alpha_i q^i$ (5.1)

Then we suppose that

$\displaystyle y=\cos z + \sum_{i=1}^{\infty}q^{i}c_i(z)$ (5.2)

We determine the nature of the $ c_i$ functions as follows. Plugging our solution into the Mathieu equation, we get

$\displaystyle y''=-\cos z + \sum_{i=1}^{\infty}q^ic_i''(z)$

$\displaystyle ay = \cos z + \sum_{i=1}^{\infty}q^i\left(c_i + \alpha_i \cos z + \sum_{k=1}^{i-1}\alpha_i c_{i-k}\right)$

Using the identity
    $\displaystyle 2\cos (\frac{1}{2}(A+B))\cos (\frac{1}{2}(A-B))$  
$\displaystyle =$ $\displaystyle \frac{\left(e^{1/2(A+B)}+e^{-1/2(A+B)}\right)\left(e^{1/2(A-B)}+e^{-1/2(A-B))}\right)}{2}$    
$\displaystyle =$   $\displaystyle \frac{e^A + e^{-A}}{2} + \frac{e^{B} + e^{-B}}{2}$  
$\displaystyle =$ $\displaystyle \cos A + \cos B$    

$\displaystyle -(2q\cos 2z)y=-q(\cos(z)+\cos(3z)-2\cos(2z)\sum_{i=1}^{\infty}q^{i+1}c_1 $

Coefficents are matched:
$\displaystyle q^0$ $\displaystyle      $ $\displaystyle \cos z = cos z = 0$  
$\displaystyle q^1$ $\displaystyle      $ $\displaystyle c''_1 + c_1 -\cos(3z)+(\alpha_1 -1)\cos z = 0$  
$\displaystyle q^2$ $\displaystyle      $ $\displaystyle c''_2 + C_2 + \alpha_1 c_1 -2c_1 \cos 2z + \alpha_2 \cos z =0$  

The particular solution corresponding to $ (\alpha_1 -1)\cos z$ is $ 1/2(1-\alpha_1) z \sin z$ which is not bounded, thus we require that $ \alpha_1 = 1$ such that

$\displaystyle c_1''+c_1 = \cos 3z$

$\displaystyle w'' + w = A \cos mz \rightarrow w = -\frac{A \cos mz}{(m^2-1)}  \ni$

$\displaystyle c_1 = -\frac{1}{8}\cos 3z$

The arguments presented before imply that

$\displaystyle \alpha_2 = -\frac{1}{8} \ni c''_2 + c_2 = \frac{1}{8}\cos 3z - \frac{1}{8} \cos 5z$

$\displaystyle \Rightarrow  c_2 = -\frac{1}{64}\cos 3z + \frac{1}{192} \cos 5z$

Following [4], we write

$\displaystyle \alpha_3 = -\frac{1}{64},   c_3 = -\frac{1}{152}\left(\frac{\cos 3z}{3} -\frac{4 \cos 5z}{9}+\frac{\cos 7z}{18}\right)$

and so we find the c functions can be represted by ``cosine-elliptic'' function,
$\displaystyle ce_1(z,q)$ $\displaystyle =$ $\displaystyle \cos z -\frac{1}{8}q\cos 3z + \frac{1}{64}q^2\left(-\cos 3z + \frac{\cos 5z}{3}\right)-$  
    $\displaystyle \frac{q^3}{512}\left(\frac{\cos 3z}{3}-\frac{ 4 \cos 5z}{9} + \frac{\cos 7z}{18}\right) +O(q^4)$ (5.3)

$\displaystyle a=1 + q -\frac{q^2}{8} -\frac{q^3}{64} + O(q^4)$ (5.4)


next up previous
Next: Fractional order Up: Technical details Previous: Technical details
tim jones 2008-07-07