Next: The Trace
Up: Detailed Derivation of the
Previous: Construction of the Hamiltonian
Beginning with Equation 2.10, we take the first integration to get,
![$\displaystyle \rho_{se}(t)=\rho_{se}(0)+\frac{1}{i\hbar}\int^t_0\left[H_i(t'),\rho_{se}(t')\right]dt'$](img55.png) |
(3.1) |
Taking this result, we plug it into itself and get,
![$\displaystyle \rho_{se}(t)=\rho_{se}(0)+\frac{1}{i\hbar}\int^t_0\left[H_i(t'),\...
...bar^2}\int^t_0\int^{t'}_0\left[H_i(t'),[H_i(t''),\rho_{se}(t'')\right]dt''dt'\ $](img56.png) |
(3.2) |
Quoting Narducci, ``now we do something unexpected'' and differentiate this equation.
Since,
and

anything
we get the result,
![$\displaystyle \frac{\rho_{se}(t)}{dt}=\frac{1}{i\hbar}[H_i(t),\rho_{se}(0)]-\frac{1}{\hbar^2}\int_0^t \left[H_i(t),[H_i(t'),\rho_{se}(t')]\right]$](img60.png) |
(3.3) |
Timothy Jones
2006-10-11