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4.3 Romberg Integration

We can view Romberg’s method as the natural generalization of the routine

qsimp in the last section to integration schemes that are of higher order than Simp-

son’s rule. The basic idea is to use the results from k successive refinements of the

extended trapezoidal rule (implemented in trapzd) to remove all terms in the error

series up to but not including O.1=N 2k/. The routine qsimp is the case of k D 2.

This is one example of a very general idea that goes by the name of Richardson’s de-

ferred approach to the limit: Perform some numerical algorithm for various values

of a parameter h, and then extrapolate the result to the continuum limit h D 0.

Equation (4.2.4), which subtracts off the leading error term, is a special case of

polynomial extrapolation. In the more general Romberg case, we can use Neville’s

algorithm (see ÷3.2) to extrapolate the successive refinements to zero stepsize. Ne-

ville’s algorithm can in fact be coded very concisely within a Romberg integration

routine. For clarity of the program, however, it seems better to do the extrapolation

by a function call to Poly_interp::rawinterp, as given in ÷3.2.

template <class T>romberg.h
Doub qromb(T &func, Doub a, Doub b, const Doub eps=1.0e-10) {
Returns the integral of the function or functor func from a to b. Integration is performed by
Romberg’s method of order 2K, where, e.g., K=2 is Simpson’s rule.

const Int JMAX=20, JMAXP=JMAX+1, K=5;
Here EPS is the fractional accuracy desired, as determined by the extrapolation error es-
timate; JMAX limits the total number of steps; K is the number of points used in the
extrapolation.
VecDoub s(JMAX),h(JMAXP); These store the successive trapezoidal approxi-

mations and their relative stepsizes.Poly_interp polint(h,s,K);
h[0]=1.0;
Trapzd<T> t(func,a,b);
for (Int j=1;j<=JMAX;j++) {

s[j-1]=t.next();
if (j >= K) {

Doub ss=polint.rawinterp(j-K,0.0);
if (abs(polint.dy) <= eps*abs(ss)) return ss;

}
h[j]=0.25*h[j-1];
This is a key step: The factor is 0.25 even though the stepsize is decreased by only
0.5. This makes the extrapolation a polynomial in h2 as allowed by equation (4.2.1),
not just a polynomial in h.

}
throw("Too many steps in routine qromb");

}

The routine qromb is quite powerful for sufficiently smooth (e.g., analytic) in-

tegrands, integrated over intervals that contain no singularities, and where the end-

points are also nonsingular. qromb, in such circumstances, takes many, many fewer

function evaluations than either of the routines in ÷4.2. For example, the integral

Z 2

0

x4 log.x C

p

x2 C 1/dx

converges (with parameters as shown above) on the second extrapolation, after just

6 calls to trapzd, while qsimp requires 11 calls (32 times as many evaluations of

the integrand) and qtrap requires 19 calls (8192 times as many evaluations of the

integrand).
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4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the

following problems:

� its integrand goes to a finite limiting value at finite upper and lower limits, but

cannot be evaluated right on one of those limits (e.g., sin x=x at x D 0)

� its upper limit is 1 , or its lower limit is �1

� it has an integrable singularity at either limit (e.g., x�1=2 at x D 0)

� it has an integrable singularity at a known place between its upper and lower

limits

� it has an integrable singularity at an unknown place between its upper and

lower limits

If an integral is infinite (e.g.,
R 1

1 x�1dx), or does not exist in a limiting sense

(e.g.,
R 1

�1 cos xdx), we do not call it improper; we call it impossible. No amount of

clever algorithmics will return a meaningful answer to an ill-posed problem.

In this section we will generalize the techniques of the preceding two sections

to cover the first four problems on the above list. A more advanced discussion of

quadrature with integrable singularities occurs in Chapter 19, notably ÷19.3. The

fifth problem, singularity at an unknown location, can really only be handled by the

use of a variable stepsize differential equation integration routine, as will be given in

Chapter 17, or an adaptive quadrature routine such as in ÷4.7.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but

one that is an open formula in the sense of ÷4.1, i.e., does not require the integrand to

be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is the

best choice. The reason is that (4.1.19) shares with (4.1.11) the “deep” property of

having an error series that is entirely even in h. Indeed there is a formula, not as well

known as it ought to be, called the Second Euler-Maclaurin summation formula,
Z xN �1

x0

f .x/dx D hŒf1=2 C f3=2 C f5=2 C � � � C fN �5=2 C fN �3=2�

C
B2h2

4
.f 0

N �1 � f 0
0/ C � � �

C
B2kh2k

.2k/Š
.1 � 2�2kC1/.f

.2k�1/
N �1 � f

.2k�1/
0 / C � � �

(4.4.1)

This equation can be derived by writing out (4.2.1) with stepsize h, then writing it

out again with stepsize h=2, and then subtracting the first from twice the second.

It is not possible to double the number of steps in the extended midpoint rule

and still have the benefit of previous function evaluations (try it!). However, it is


