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4.3 Romberg Integration

We can view Romberg’s method as the natural generalization of the routine
gsimp in the last section to integration schemes that are of higher order than Simp-
son’s rule. The basic idea is to use the results from k successive refinements of the
extended trapezoidal rule (implemented in trapzd) to remove all terms in the error
series up to but not including O(1/N?¥). The routine gsimp is the case of k = 2.
This is one example of a very general idea that goes by the name of Richardson’s de-
ferred approach to the limit: Perform some numerical algorithm for various values
of a parameter %, and then extrapolate the result to the continuum limit 2 = 0.

Equation (4.2.4), which subtracts off the leading error term, is a special case of
polynomial extrapolation. In the more general Romberg case, we can use Neville’s
algorithm (see §3.2) to extrapolate the successive refinements to zero stepsize. Ne-
ville’s algorithm can in fact be coded very concisely within a Romberg integration
routine. For clarity of the program, however, it seems better to do the extrapolation
by a function call to Poly_interp: :rawinterp, as given in §3.2.

template <class T>
Doub qromb(T &func, Doub a, Doub b, const Doub eps=1.0e-10) {
Returns the integral of the function or functor func from a to b. Integration is performed by
Romberg's method of order 2K, where, e.g., K=2 is Simpson's rule.
const Int JMAX=20, JMAXP=JMAX+1, K=5;
Here EPS is the fractional accuracy desired, as determined by the extrapolation error es-
timate; JMAX limits the total number of steps; K is the number of points used in the
extrapolation.

VecDoub s(JMAX) ,h(JMAXP); These store the successive trapezoidal approxi-
Poly_interp polint(h,s,K); mations and their relative stepsizes.
h[0]=1.0;

Trapzd<T> t(func,a,b);
for (Int j=1;j<=JMAX;j++) {
s[j-1]1=t.next;
if (5 >= K) {
Doub ss=polint.rawinterp(j-K,0.0);
if (abs(polint.dy) <= eps*abs(ss)) return ss;
}
h[j1=0.25%h[j-11;
This is a key step: The factor is 0.25 even though the stepsize is decreased by only
0.5. This makes the extrapolation a polynomial in h? as allowed by equation (4.2.1),
not just a polynomial in A.
}

throw("Too many steps in routine qromb");

The routine qromb is quite powerful for sufficiently smooth (e.g., analytic) in-
tegrands, integrated over intervals that contain no singularities, and where the end-
points are also nonsingular. gromb, in such circumstances, takes many, many fewer
function evaluations than either of the routines in §4.2. For example, the integral

2
/ x*log(x + v/x2 + 1)dx
0

converges (with parameters as shown above) on the second extrapolation, after just
6 calls to trapzd, while gsimp requires 11 calls (32 times as many evaluations of
the integrand) and qtrap requires 19 calls (8192 times as many evaluations of the
integrand).
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4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

e its integrand goes to a finite limiting value at finite upper and lower limits, but
cannot be evaluated right on one of those limits (e.g., sinx/x at x = 0)

e its upper limit is oo , or its lower limit is —oo

e it has an integrable singularity at either limit (e.g., x~2 at x = 0)

e it has an integrable singularity at a known place between its upper and lower
limits

e it has an integrable singularity at an unknown place between its upper and
lower limits

If an integral is infinite (e.g., || 1°° x~1dx), or does not exist in a limiting sense
(e.g., ffooo cos xdx), we do not call it improper; we call it impossible. No amount of
clever algorithmics will return a meaningful answer to an ill-posed problem.

In this section we will generalize the techniques of the preceding two sections
to cover the first four problems on the above list. A more advanced discussion of
quadrature with integrable singularities occurs in Chapter 19, notably §19.3. The
fifth problem, singularity at an unknown location, can really only be handled by the
use of a variable stepsize differential equation integration routine, as will be given in
Chapter 17, or an adaptive quadrature routine such as in §4.7.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
one that is an open formula in the sense of §4.1, i.e., does not require the integrand to
be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is the
best choice. The reason is that (4.1.19) shares with (4.1.11) the “deep” property of
having an error series that is entirely even in /. Indeed there is a formula, not as well
known as it ought to be, called the Second Euler-Maclaurin summation formula,

/ U dx = hfigs + foga + fop oot fvsia + fyoaal

(0]

Byh?

+ Sl = f) (4.4.1)
Boih? - - -

+ o 1= 2D = T+

This equation can be derived by writing out (4.2.1) with stepsize /, then writing it
out again with stepsize /1/2, and then subtracting the first from twice the second.

It is not possible to double the number of steps in the extended midpoint rule
and still have the benefit of previous function evaluations (try it!). However, it is
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