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within the range of integration. The game is to obtain the integral as accurately as
possible with the smallest number of function evaluations of the integrand. Just as
in the case of interpolation (Chapter 3), one has the freedom to choose methods of
various orders, with higher order sometimes, but not always, giving higher accuracy.
Romberg integration, which is discussed in §4.3, is a general formalism for mak-
ing use of integration methods of a variety of different orders, and we recommend
it highly.

Apart from the methods of this chapter and of Chapter 17, there are yet other
methods for obtaining integrals. One important class is based on function approxima-
tion. We discuss explicitly the integration of functions by Chebyshev approximation
(Clenshaw-Curtis quadrature) in §5.9. Although not explicitly discussed here, you
ought to be able to figure out how to do cubic spline quadrature using the output
of the routine spline in §3.3. (Hint: Integrate equation 3.3.3 over x analytically.
See [11.)

Some integrals related to Fourier transforms can be calculated using the fast
Fourier transform (FFT) algorithm. This is discussed in §13.9. A related problem is
the evaluation of integrals with long oscillatory tails. This is discussed at the end of
§5.3.

Multidimensional integrals are a whole "nother multidimensional bag of worms.
Section 4.8 is an introductory discussion in this chapter; the important technique of
Monte Carlo integration is treated in Chapter 7.
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4.1 Classical Formulas for Equally Spaced
Abscissas

Where would any book on numerical analysis be without Mr. Simpson and his
“rule”? The classical formulas for integrating a function whose value is known at
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Figure 4.1.1. Quadrature formulas with equally spaced abscissas compute the integral of a function
between x¢ and x . Closed formulas evaluate the function on the boundary points, while open formulas
refrain from doing so (useful if the evaluation algorithm breaks down on the boundary points).

equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modern numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as the time
of Newton, if not farther. Alas, times do change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended
midpoint rule,” equation 4.1.19; see §4.2), the classical formulas are almost entirely
useless. They are museum pieces, but beautiful ones; we now enter the museum.
(You can skip to §4.2 if you are not touristically inclined.)

Some notation: We have a sequence of abscissas, denoted x¢, X1,...,XN—1, XN,
that are spaced apart by a constant step /4,

Xi =Xo+1ih i=01,...,N (4.1.1)
A function f(x) has known values at the x;’s,

fxi) = fi (4.1.2)

We want to integrate the function f(x) between a lower limit a and an upper limit b,
where a and b are each equal to one or the other of the x;’s. An integration formula
that uses the value of the function at the endpoints, f(a) or f(b), is called a closed
formula. Occasionally, we want to integrate a function whose value at one or both
endpoints is difficult to compute (e.g., the computation of f* goes to a limit of zero
over zero there, or worse yet has an integrable singularity there). In this case we
want an open formula, which estimates the integral using only x;’s strictly between
a and b (see Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over a small number of intervals. As that number increases, we can find
rules that are exact for polynomials of increasingly high order. (Keep in mind that
higher order does not always imply higher accuracy in real cases.) A sequence of
such closed formulas is now given.



158 Chapter 4. Integration of Functions

4.1.1 Closed Newton-Cotes Formulas

Trapezoidal rule:
1 1 1
/ f(x)dx =h[—fo+—f1} + 0> f") (4.1.3)
*o 2 2

Here the error term O( ) signifies that the true answer differs from the estimate by
an amount that is the product of some numerical coefficient times /> times the value
of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evaluate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write only O( ), instead of the coefficient.
Equation (4.1.3) is a two-point formula (xo and x1). It is exact for polynomials
up to and including degree 1, i.e., f(x) = x. One anticipates that there is a three-
point formula exact up to polynomials of degree 2. This is true; moreover, by a
cancellation of coefficients due to left-right symmetry of the formula, the three-point

formula is exact for polynomials up to and including degree 3, i.e., f(x) = x>.

Simpson’s rule:
*2 1 4 1 5 (@)
J@dx=hl2fot+sfi+3L| +O00 [T (4.1.4)
x0

Here f® means the fourth derivative of the function f evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an interval of
size 2h, so the coefficients add up to 2.

There is no lucky cancellation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

. ) 3 .
Simpson’s g rule:

3 3 9 9 3
/ fx)dx = h|:§fo + gfl + gfz + §f3i| + 0 f@) (4.1.5)
x0
The five-point formula again benefits from a cancellation:

Boole’s rule (mistakenly also called Bode’s rule):

4 14 64 24 64 14 7 +(6)
[ s =[St G e A ]+ 06T
(4.1.6)
This is exact for polynomials up to and including degree 5.
At this point the formulas stop being named after famous personages, so we
will not go any further. Consult [1] for additional formulas in the sequence.

4.1.2 Extrapolative Formulas for a Single Interval

We are going to depart from historical practice for a moment. Many texts would
give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.” Here is
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an example:
*s . [55 5 5 55 5 +(4)
[ res =[Sk i i g h] 00 s)

Notice that the integral from a = x¢ to b = x5 is estimated, using only the interior
points xi, X2, x3,X4. In our opinion, formulas of this type are not useful for the
reasons that (i) they cannot usefully be strung together to get “extended” rules, as we
are about to do with the closed formulas, and (i) for all other possible uses they are
dominated by the Gaussian integration formulas, which we will introduce in §4.6.
Instead of the Newton-Cotes open formulas, let us set out the formulas for esti-
mating the integral in the single interval from x¢ to x;, using values of the function

f at x1,x2,.... These will be useful building blocks later for the “extended” open
formulas.
X
| seax=nis1 + o0 (“.17)
X0
*1 [3 1
/ f(x)dx =h —fl——f2i| + o3 f") (4.1.8)
X0 | 2 2
*1 [23 16 5
dx =h| = fi — — = oh*f® 4.1.
[ s =a[Fr-3h e 5h] +00t ) @19)
*1 [55 59 37 9
dx =h| = fi — — - — OMh° @)  (4.1.10
R ey V) R JOA AR

Perhaps a word here would be in order about how formulas like the above can
be derived. There are elegant ways, but the most straightforward is to write down the
basic form of the formula, replacing the numerical coefficients with unknowns, say
p.q.r,s. Without loss of generality take xo = 0 and x; = 1, so & = 1. Substitute
in turn for f(x) (and for fi, f2, f3, f4) the functions f(x) =1, f(x) = x, f(x) =
x2, and f(x) = x3. Doing the integral in each case reduces the left-hand side to
a number and the right-hand side to a linear equation for the unknowns p,q,r,s.
Solving the four equations produced in this way gives the coefficients.

4.1.3 Extended Formulas (Closed)

If we use equation (4.1.3) N — 1 times to do the integration in the intervals
(x0,x1), (x1,x2),..., (xy—2,xny—1) and then add the results, we obtain an “ex-
tended” or “composite” formula for the integral from x¢ to xy—_;.

Extended trapezoidal rule:

[ s =l hok fi ot

- a)3f,,) 4.1.11)

1
e _ — fa o)
N 2+2fN 1} + ( N2

Here we have written the error estimate in terms of the interval b —a and the number
of points N instead of in terms of /. This is clearer, since one is usually holding a and
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b fixed and wanting to know, e.g., how much the error will be decreased by taking
twice as many steps (in this case, it is by a factor of 4). In subsequent equations we
will show only the scaling of the error term with the number of steps.

For reasons that will not become clear until §4.2, equation (4.1.11) is in fact the
most important equation in this section; it is the basis for most practical quadrature
schemes.

The extended formula of order 1/ N3 is

[ s =h S A ft

0
13 5 1
[ A ol —
+ fn-3+ 12fN 2+ 12fN 1i| + (N3)
(4.1.12)
(We will see in a moment where this comes from.)
If we apply equation (4.1.4) to successive, nonoverlapping pairs of intervals,

we get the extended Simpson’s rule:

V-1 1 4. 2. 4
[ rwdx=nl5h e s h e A
X0

(4.1.13)

S %fzv—3 + gfzv—z + %fN—1i| + 0 (%)
Notice that the 2/3, 4/3 alternation continues throughout the interior of the evalu-
ation. Many people believe that the wobbling alternation somehow contains deep
information about the integral of their function that is not apparent to mortal eyes.
In fact, the alternation is an artifact of using the building block (4.1.4). Another
extended formula with the same order as Simpson’s rule is

[ rwdx =S ph s e S o

0

23 7 3
o+ fNos+ fu—a F ﬁfN—s + EfN—z + ng—1i|

Lo (%) 4.1.14)

This equation is constructed by fitting cubic polynomials through successive groups
of four points; we defer details to §19.3, where a similar technique is used in the
solution of integral equations. We can, however, tell you where equation (4.1.12)
came from. It is Simpson’s extended rule, averaged with a modified version of itself
in which the first and last steps are done with the trapezoidal rule (4.1.3). The trape-
zoidal step is two orders lower than Simpson’s rule; however, its contribution to the
integral goes down as an additional power of N (since it is used only twice, not N
times). This makes the resulting formula of degree one less than Simpson.

4.1.4 Extended Formulas (Open and Semi-Open)

We can construct open and semi-open extended formulas by adding the closed
formulas (4.1.11) — (4.1.14), evaluated for the second and subsequent steps, to the
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extrapolative open formulas for the first step, (4.1.7) — (4.1.10). As discussed imme-
diately above, it is consistent to use an end step that is of one order lower than the
(repeated) interior step. The resulting formulas for an interval open at both ends are
as follows.

Equations (4.1.7) and (4.1.11) give

/)::N_l f(x)dx = h[%fl + ot i+t s+ ng_z} o (%)

(4.1.15)
Equations (4.1.8) and (4.1.12) give

[ s =h[ B Lhk fit ot

0

7 23 1
it — s+ = e of—
+ fN-sa+ 12fN 3+ 12fN 2} + (N3)

(4.1.16)
Equations (4.1.9) and (4.1.13) give

*N-1 27 13 4
[ rwas = A0 A S

0

N4
4.1.17)

The interior points alternate 4/3 and 2/3. If we want to avoid this alternation,
we can combine equations (4.1.9) and (4.1.14), giving

4 13 27 1
cee e = fy_ 0+ — fy— O —
+ 3fN 5+ 12fzv 4+0+ 12fN 2i| + ( )

/Nqﬂmh=4§ﬁ—éﬁ+%ﬁ+ﬂ+ﬁ+ﬁ+

0

11 1 55
o+ fn-e+ fN-s5+ ng—4 — ng—s + ﬂfN—2i|

+0(%0 (4.1.18)

We should mention in passing another extended open formula, for use where
the limits of integration are located halfway between tabulated abscissas. This one is
known as the extended midpoint rule and is accurate to the same order as (4.1.15):

[ s =ik fa ot foa et fus+ fvsel 40 (53)

0
(4.1.19)
There are also formulas of higher order for this situation, but we will refrain from
giving them.

The semi-open formulas are just the obvious combinations of equations (4.1.11)
—(4.1.14) with (4.1.15) — (4.1.18), respectively. At the closed end of the integration,
use the weights from the former equations; at the open end, use the weights from
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Figure 4.2.1. Sequential calls to the routine Trapzd incorporate the information from previous calls and
evaluate the integrand only at those new points necessary to refine the grid. The bottom line shows the
totality of function evaluations after the fourth call. The routine qsimp, by weighting the intermediate
results, transforms the trapezoid rule into Simpson’s rule with essentially no additional overhead.

the latter equations. One example should give the idea, the formula with error term
decreasing as 1/N?3, which is closed on the right and open on the left:

[ rwx =h| B s e far

0
13 5 1
_ = fy_ — fN— 0| —
+ fn-3+ 12fN 2+ 12fN 1i| + (N3)
(4.1.20)
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4.2 Elementary Algorithms

Our starting point is equation (4.1.11), the extended trapezoidal rule. There are
two facts about the trapezoidal rule that make it the starting point for a variety of
algorithms. One fact is rather obvious, while the second is rather “deep.”

The obvious fact is that, for a fixed function f(x) to be integrated between fixed
limits ¢ and b, one can double the number of intervals in the extended trapezoidal
rule without losing the benefit of previous work. The coarsest implementation of the
trapezoidal rule is to average the function at its endpoints a and b. The first stage
of refinement is to add to this average the value of the function at the halfway point.
The second stage of refinement is to add the values at the 1/4 and 3/4 points. And so
on (see Figure 4.2.1).

As we will see, a number of elementary quadrature algorithms involve adding
successive stages of refinement. It is convenient to encapsulate this feature in a
Quadrature structure:

‘panqiyotd Apouis si “4eindwod Jaaias algnd Aue 0y (suo siyl Buipnjoul) sajiy ajgqepeal-auiyoew jo buikdoo Aue 1o ‘uononpoidal Jayiing -asn jeuosiad umo Jiayy 1o} Adod Jaded auo ayew 0}
$19q1Iosqns paziloyine Joj pajueld S| uoissiwiad sadioal fesawnuy/:dny ‘eremyog sadipay [eouawnp Aq paysiignd si uonipa 21u033le Siyl B0 abpuquied mmm/:diny ‘ssaid Alsienun
abpuquie) Aq paysignd si 8-89088- 125-0-826 NESI 3000 JonoopieH -aiemyos sadioay [eouswnN Aq £002-2861 @ 1ybliAdo) s1 opod 82inos Jendwo) ‘ssaid Ausianiun abpuqued Aq

£002-8861 @ ybBuAdoD sixal *(1102) #0°¢ uoisiep Aisuueld d'g pue ‘Bullislep "L'M AISIonal "v'S ‘sseld "H'M Ag ‘uomp3 pay L ‘Bunndwod oynusidg Jo Wy 8yl :sediosy [edliewnN



