## **Butcher Tableaux**

The general form of a Runge-Kutta scheme (state  $n \to n+1$ ) to solve the ODE

$$\frac{dy}{dx} = f(x, y)$$

is

$$\begin{array}{rcl} \delta y_{0} & = & \delta x \, f(x_{n} + a_{0} \delta x, \, y_{n}) \\ \delta y_{1} & = & \delta x \, f(x_{n} + a_{1} \delta x, \, y_{n} + b_{10} \delta y_{0}) \\ \delta y_{2} & = & \delta x \, f(x_{n} + a_{2} \delta x, \, y_{n} + b_{20} \delta y_{0} + b_{21} \delta y_{1}) \\ & \cdot & \cdot \\ & \cdot & \cdot \\ \delta y_{s-1} & = & \delta x \, f\left(x_{n} + a_{s-1} \delta x, \, y_{n} + \sum_{i=0}^{s-2} b_{s-1,i} \, \delta y_{i}\right) \\ y_{n+1} & = & y_{n} \, + \, \sum_{i=0}^{s-1} c_{i} \delta y_{i} \end{array}$$

(see Numerical Recipes, Sec. 17.2). This is not quite the syntax used previously in class or in the book—the count starts at 0 to facilitate translation of the algorithm into Python. The method is defined by s, the number of stages, the offsets  $a_i$  and  $b_{ji}$ , and the weights  $c_i$ .

The whole scheme is often written compactly in the form of a Butcher tableau:

Butcher tableaux for some of the schemes we have explored follow.

Euler

Implicit Euler

Midpoint

$$\begin{array}{c|cc}
0 & & \\
\frac{1}{2} & \frac{1}{2} & \\
\hline
& 0 & 1 & \\
\end{array}$$

3/8 Rule

Runge-Kutta 4

Note that blank spaces in the 2-D b array should be interpreted as zeros, and any nonzero element on or above the diagonal means that this stage in the algorithm is implicit.