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1. (SMIN 6.2) Suppose, contrary to our work in this chapter, that the photon had a very small mass,
10−4 eV. What would the effective range of the electromagnetic force be? Express your answer in meters.
Approximately how light (in kilograms) would the photon need to be such that earth-scale magnetic fields
would still be measurable?
Solution:
The interaction field is approximately given by

Eint ≈
e−mr

4πr

For a measuralble field E ≊ 1 so with M = 10−4eV ≈ 1.8× 10−40kg we have

e−mr

4πr
≊ 1 ⇒ r ≈ 0.0795m

The magnetic field of earth is B = 25× 10−9T for this to be measurable in earth scale r ≈ 6.4× 106m we
again solve for m in the equation

Bint ≈
e−mr

4mπr

25× 10−9 ≈ e−m6.4×106

4mπ6.4× 106
⇒ m ≈ 1.9× 10−7kg

The mass of photon has to be very low in order for this to be measured. □

2. (SMIN 6.6) In classical electrodynamics, radiation is propagated along the Poynting vector,

S = E ×B,

an ordinary 3-vector. Express the components of Si in terms of components of Fµν in as simplified form
as possible.
Solution:
In index notation the cross products of two vector is

Si = εijkE
jBk

Since the magnetic field and electric field components in terms of the Farady tensor elements are

F 0i = Ei F ij = Bk

The Poynting vector becomes

Si = εijkF
0jF ij ⇒ S =

F 02F 12 − F 03F 31

F 03F 23 − F 01F 12

F 01F 31 − F 02F 23


This is the required Poynting vector in terms of the components of Farady tensor. □
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3. (SMIN 6.9) In developing the two polarization-states model for the photon we lied upon U(1) gauge
invariance, which in turn depends on a massless photon. We know that a spin-1 particle are supposed
to have three spin states, but we claimed that the third state was swallowed by the Coulomb gauge
condition. Lets’ approach the question of three states by assuming that the photon does have mass and
obeys lagrangian

L = −1

4
FµνF

µν +
1

2
M2AµAµ

(a) Write the Euler-Lagrange equation for the massive photon field.
Solution:
Since by definition the Farady tensor is the antisymmetric tensor formed by various derivatives of the
components of Aµ.

Fµν = ∂µAν − ∂νAµ Fµν = ∂µAν − ∂νAµ

The product term in the lagrangian is:

FµνFµν = (∂µAν − ∂νAµ) (∂µAν − ∂νAµ)

= ∂µAν∂µ∂ν − ∂µAν∂νAµ − ∂νAµ∂µAν + ∂νAµ∂νAµ

= 2 (∂µAν∂µAν − ∂µAν∂νAµ)

Writing out the lagrangian in terms of these components we get

L = −1

2
(∂µAν∂µAν − ∂µAν∂νAµ) +

1

2
M2AµAµ

Thus the Euler-Lagrange equations become

∂µ

(
∂L

∂(∂µAν)

)
=

∂L
∂Aν

−1

2
∂µ (∂

µAν − ∂νAµ) =
1

2
M2Aν

−∂µF
µν = M2Aν

These are the required Euler-Lagrange equations. □

(b) Let the photon field take the form of a single plane wave:

Aµ = εµe−ip·x.

Express the Euler-Lagrange equations as dot products of p and ε with themselves and with each other.
Show that the transverse wave condition drops out of the dispersion relation regardless of whether the
field has mass.
Solution:
For this field the Farady tensor becomes

Fµν = ∂µAν − ∂νAµ = −ipµε
νe−ip·x + ipνε

µe−ip·x = −i (pµε
ν − pνε

µ) e−ip·x

So the Euler-Lagrange equations become

−∂µF
µν = M2Aν

−
[
−i (pµε

ν − pνε
µ) (−ipµ)e−ip·x] = M2eνe−ip·x

(pµpµε
ν − pνε

µpµ) = M2εν

(p · pεν − pνε · p) = M2εν

Regardless of the mass the coefficient of pν on the LHS must be 0 so the dot product ε · p = 0. □
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(c) What is the third possible polarization-state for a massive photon propagating in the z-direction?
Solution:
For this vector field, p · p = M2 and ε · p = 0. For a particle moving in z direction with moentum pz
and Energy E the momentum 4-vector is pµ =

(
E 0 0 pz

)T
. The linearly independent ε vector

satisfying these relations apart from the ones given is

ε3 =


pz
0
0
E

 as ε3 · p =


pz
0
0
E

 ·


E
0
0
pz

 = pzE − Epz = 0

Since the inner product of ε with itself is p2 −E2 = −M2, we could choose normalization factor i/M
for ε. □

(d) What are the electric and magnetic fields of the massive photon field in this third polarization state?
What happens to theose fields for m = 0?
Solution:
Now the Electric and magnetic fields are simply the components of Farady tensor

Ei = F 0i = −i
(
p0ε

i − piε
0
)
eip·x

Ex = F 01 = −i
(
p0ε

1 − p1ε
0
)
eip·x = 0

Ey = F 02 = −i
(
p0ε

2 − p2ε
0
)
eip·x = 0

Ez = F 03 = −i
(
p0ε

3 − p3ε
0
)
eip·x = −i(E2 − p2)e−ip·x = −iM2e−ip·x

Bk = F ij = −i
(
piε

j − piε
j
)
eip·x

Bx = F 23 = −i
(
p2ε

3 − p3ε
2
)
eip·x = 0

By = F 31 = −i
(
p3ε

1 − p1ε
4
)
eip·x = 0

Bz = F 12 = −i
(
p1ε

2 − p2ε
1
)
eip·x = 0

So E =
[
−iM2e−ipx

]
ẑ and B = 0. If M = 0 then the Electric field vanishes as well, so both the fields

vanish. □

4. (SMIN 6.10) Consider an electron in a spin state

ϕ =

(
a
b

)
in a magnetic field B0 oriented along the z-axis. We will calculate the Larmor Frequency by which the
electron precesses.

(a) Turn the interaction Hamiltonian into a first order differential equation in time.
Solution:
The given interaction hamiltonian is

Ĥint = −qeB0

2m

(
1 0
0 −1

)
Writing the hamiltonian as i∂0 = i ∂

∂t

i
∂

∂t

(
a
b

)
= −qeB0

2m

(
a
−b

)
So the differential equations are

i
∂a

∂t
= −qeB0

2m
a i

∂b

∂t
=

qeB0

2m
b

These are the required differential equations. □
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(b) Solve the differential equation in part a. What is the Frequency of oscillation of the phase difference
between teh two components?
Solution:
The solutions are

a = a0e
iqeB0
2m t b = b0e

− iqeB0
2m t

The phase difference is

φ =

(
iqeB0t

2m

)
−
(
− iqeB0t

2m

)
=

iqeB0t

m

The frequency of oscillation is

iqeB0

m

This is the required frequency. □
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