PHYS T580: The Standard Model

Homework #4

Prakash Gautam

April 30, 2018

- 1. **(SMIN 4.1)** Consider a rectangle.
	- (a) List all the possible unique transformations that can be performed that will leave it looking the same as it did initially.

Solution:

The possible transformations that leave the rectangle looking the same are

- i. Leaving where it is (I).
- ii. Rotation through 180*◦* (R).
- iii. Flipping along the vertical axis through mid points of *A* & *B* and *C* & *D* (F_u) .
- iv. Flipping along the horizontal axis through mid points of $A \& C$ and $B \& D (F_x)$.

□

(b) Construct the multiplication table for your set of transformations. **Solution:**

The multiplication table for the transformations is

$$
\begin{array}{c|ccccc}\n\circ & I & R & F_x & F_y \\
\hline\nI & I & R & F_x & F_y \\
R & R & I & F_y & F_x \\
F_x & F_x & F_y & I & R \\
F_y & F_y & F_x & R & I\n\end{array}
$$

□

(c) Does this set have the properties of a group? **Solution:**

From the multiplication table it is clear that the element satisfy closure. The element *I* acts as the identity. Each elements are the inverses of themselves. And associativity is evidently followed. This proves that the elements form a group. \Box

2. **(SMIN 4.2)** Quaternions are a set of objects that are an extension of imaginary numbers except that there are three of them i, j and k , with the relations

$$
i^2 = j^2 = k^2 = ijk = -1
$$

(a) Construct the smallest group possible that contains all the quarternions.

Solution:

.

Closure of the group requires that at least, *i, j, k* and *−*1 to be the members of the group. Since $i^2 = i \circ i = -1$, *i* can't be the identity of the group. Similarly *j* and *k* can't be identity of the group. That leaves *−*1 as the only candidate for the identity of the group. If we can satisfy other requirement of group, then *i, j, k* and *−*1 will form a group with *−*1 as the identity.

If we define $-1 \circ -1 = -1$, which doesn't violate any of the given requirements, -1 , works as the identity element.

Since $i^2 = i \circ i = -1$ and -1 is identity, *i* by definition becomes the inverse of itself. Similarly *j* and *k* are inverses of themselves. So the group is

$$
G\left(\left\{-1,i,j,k\right\},\circ\right)
$$

□

(b) Compute the commutation relation [*j, i*].

Solution:

The commutator of a group is defined as

$$
[j,i] = j^{-1}i^{-1}ji
$$

Where i^{-1} and j^{-1} are the inverses of *i* and *j* respectively. Also since $ijk = -1$. Multiplying by i^{-1} on the left gives $jk = i$ and multiplying by k^{-1} on the right gives $ij = k$. From (2a) we have $i^{-1} = i$ and $j^{-1} = j$

$$
[j,i] = j^{-1}i^{-1}ji = jiji = j(ij)i = j(k)i = (jk)i = ii = -1
$$

Since the commutator is identity element of the group, this group is abelian so that the elements commute. \Box

(c) Construct a multiplication table for the quarternions.

Solution:

The multiplication table becomes

This is the required multiplication table. \Box

3. **(SMIN 4.6)** Expand the series *e [−]iθσ*² explicitly and reduce to common trigonometric, algebraic or hypergeometric functions.

Solution:

The SU(2) rotation matrix with generator σ_2 is $M(\theta) = e^{-i\theta\sigma_2}$. Expanding it out as a Taylor series gives

$$
e^{-i\theta \sigma_2} = 1 - i\theta \sigma_2 - \sigma_2^2 \frac{\theta^2}{2!} + i\sigma_2^3 \frac{\theta^3}{3!} + \sigma_2^4 \frac{\theta^4}{4!} - \dots
$$

Since for the Pauli matrices $\sigma_i^2 = 1$ which implies that for odd powers the Pauli matrices are the matrices themselves and for even power they reduce to identity, thus we can write

$$
e^{-i\theta\sigma_2} = 1 - i\theta\sigma_2 - \frac{\theta^2}{2!} + i\sigma_2\frac{\theta^3}{3!} + \frac{\theta^4}{4!} - \dots
$$

= $1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots - i\theta\sigma_2 + i\sigma_2\frac{\theta^3}{3!} - \dots$
= $\left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots\right) - i\sigma_2\left(\theta - \frac{\theta^3}{3!} + \dots\right)$
= $\cos\theta - i\sigma_2\sin\theta$

Writing out the explicit matrix form for identity $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\sigma_2 =$ (0 *−i i* 0 \setminus we get

$$
\mathbf{M} = e^{-i\theta\sigma_2} = \cos\theta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - i \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \sin\theta
$$

$$
= \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}
$$

This is the required 2×2 matrix representation of $e^{-i\theta \sigma_2}$

4. **(SMIN 4.10)** Consider a universe consisting of a complex field defined by two components

$$
\Phi=\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix}
$$

The Lagrangian takes the form

$$
\mathcal{L} = \partial^{\mu} \Phi^{\dagger} \partial_{\mu} \Phi - m^2 \Phi^{\dagger} \Phi.
$$

In some sense, there are four fields at work here, ϕ_2 , ϕ_2^* , ϕ_1 and ϕ_1^* . But for the purpose of this problem, you should generally think Φ and Φ^{\dagger} as representing the two different fields. Since each is a 2 *− D* vector, there are still four degrees of freedom.

(a) Consider a rotation in SU(2) in θ^1 direction (σ_x) . Expand M as infinite series, and express as a 2 \times 2 matrix of only trigonometric functions of θ^1 .

Solution:

The SU(2) rotation matrix with generator σ_x is $M(\theta) = e^{-i\theta \sigma_x}$. Expanding it out as a Taylor series gives

$$
e^{-i\theta\sigma_x} = 1 - i\theta\sigma_x - \sigma_x^2 \frac{\theta^2}{2!} + i\sigma_x^3 \frac{\theta^3}{3!} + \sigma_x^4 \frac{\theta^4}{4!} - \dots
$$

Since for the Pauli matrices $\sigma_i^2 = 1$ which implies that for odd powers the Pauli matrices are the matrices themselves and for even power they reduce to identity, thus we can write

$$
e^{-i\theta\sigma_x} = 1 - i\theta\sigma_x - \frac{\theta^2}{2!} + i\sigma_x \frac{\theta^3}{3!} + \frac{\theta^4}{4!} - \dots
$$

$$
= 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots - i\theta\sigma_x + i\sigma_x \frac{\theta^3}{3!} - \dots
$$

$$
= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots\right) - i\sigma_x \left(\theta - \frac{\theta^3}{3!} + \dots\right)
$$

$$
= \cos\theta - i\sigma_x \sin\theta
$$

Writing out the explicit matrix form for identity $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\sigma_x =$ $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ we get

$$
\mathbf{M} = e^{-i\theta\sigma_x} = \cos\theta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sin\theta
$$

$$
= \begin{pmatrix} \cos\theta & -i\sin\theta \\ -i\sin\theta & \cos\theta \end{pmatrix}
$$

This is the required 2×2 matrix representation of $SU(2)$ representing rotation in θ^1 direction. \Box

(b) Verify numerically that your matrix (*i*) is unitary and (*ii*) has a determinant of 1. **Solution:**

. □

Checking for Unitarity

$$
\mathbf{M}\mathbf{M}^{\dagger} = \begin{pmatrix} \cos\theta & -i\sin\theta \\ -i\sin\theta & \cos\theta \end{pmatrix} \cdot \begin{pmatrix} \cos\theta & i\sin\theta \\ i\sin\theta & \cos\theta \end{pmatrix}
$$

$$
= \begin{pmatrix} \cos^2\theta + (-i\sin\theta)(i\sin\theta) & (i\cos\theta\sin\theta) + (-i\cos\theta\sin\theta) \\ (-i\cos\theta\sin\theta) + (i\cos\theta\sin\theta) & \cos^2\theta + (-i\sin\theta)(i\sin\theta) \end{pmatrix}
$$

$$
= \begin{pmatrix} \sin^2\theta + \cos^2\theta & 0 \\ 0 & sin^2\theta + \cos^2\theta \end{pmatrix}
$$

$$
= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{I}
$$

This shows the matrix is unitary. Checking for determinant

$$
\det{\{\mathbf{M}\}} = \begin{vmatrix} \cos\theta & -i\sin\theta \\ -i\sin\theta & \cos\theta \end{vmatrix} = \cos\theta\cos\theta - (-i\sin\theta)(-i\sin\theta) = \cos^2\theta + \sin^2\theta = 1
$$

The determinant of the matrix is also 1. \Box

(c) Compute a general expression for the current associated with the rotations in θ^1 . **Solution:**

This Lagrangian is clearly invariant under the transformation Φ *→ M*Φ. The generator of which is σ_2 thus the conserved current is

$$
\mathcal{L} = g^{\mu\nu} \partial_{\nu} \Phi^{\dagger} \partial_{\mu} \Phi - m^2 \Phi^{\dagger} \Phi
$$
\n
$$
\Rightarrow \frac{\partial \mathcal{L}}{\partial(\partial_{\nu} \Phi^{\dagger})} = g^{\mu\nu} \partial_{\mu} \Phi = \partial^{\nu} \Phi
$$
\n
$$
\Rightarrow \frac{\partial \mathcal{L}}{\partial(\partial_{\mu} \Phi)} = g^{\mu\nu} \partial_{\mu} \Phi = \partial^{\nu} \Phi
$$
\n
$$
\Rightarrow \frac{\partial \mathcal{L}}{\partial(\partial_{\mu} \Phi)} = \partial^{\mu} \Phi^{\dagger}
$$

$$
J^{\mu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\Phi)} \frac{\mathrm{d}\Phi}{\mathrm{d}\epsilon} + \frac{\mathrm{d}\Phi^{\dagger}}{\mathrm{d}\epsilon} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\Phi^{\dagger})}
$$

= $\partial^{\mu}\Phi^{\dagger}(-i\sigma_{2}\Phi) + (i\sigma_{2}\Phi^{\dagger})\partial^{\mu}\Phi$
= $i\sigma_{2} \left(-(\partial^{\mu}\Phi^{\dagger}) \Phi + \Phi^{\dagger}\partial^{\mu}\Phi \right)$

This gives the expression for conserved current. \Box