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1. (SMIN 4.1) Consider a rectangle.
(a) List all the possible unique transformations that can be performed that will leave it looking the same
as it did initially.
Solution:
The possible transformations that leave the rectangle looking the same are

i. Leaving where it is (I).

ii. Rotation through 180° (R).
ili. Flipping along the vertical axis through mid points of A & B and C & D (F,).
iv. Flipping along the horizontal axis through mid points of A & C and B & D (F).

O
(b) Construct the multiplication table for your set of transformations.
Solution:
The multiplication table for the transformations is
ol I R F, F,
1 I R F, F
R R 1 F, F,
F, || Fr Fy I R
Fy || Fy F» R I
O

(c) Does this set have the properties of a group?
Solution:
From the multiplication table it is clear that the element satisfy closure. The element I acts as the
identity. Each elements are the inverses of themselves. And associativity is evidently followed. This
proves that the elements form a group. O

2. (SMIN 4.2) Quaternions are a set of objects that are an extension of imaginary numbers except that
there are three of them 4, j and k, with the relations

P?=2 =k =ijk=-1

(a) Construct the smallest group possible that contains all the quarternions.
Solution:
Closure of the group requires that at least, ¢,j,k and —1 to be the members of the group. Since
i? =io0i=—1,i can’t be the identity of the group. Similarly j and k can’t be identity of the group.
That leaves —1 as the only candidate for the identity of the group. If we can satisfy other requirement
of group, then 4, j, k and —1 will form a group with —1 as the identity.



If we define —1 0 —1 = —1, which doesn’t violate any of the given requirements, —1, works as the
identity element.

Since i? =4 0i = —1 and —1 is identity, 4 by definition becomes the inverse of itself. Similarly j and
k are inverses of themselves. So the group is

G({_laivjak}7o)

(b) Compute the commutation relation [7, 7.
Solution:
The commutator of a group is defined as
i = 5N
Where i~! and j~! are the inverses of i and j respectively. Also since ijk = —1. Multiplying by i~!
on the left gives jk = i and multiplying by £~! on the right gives ij = k. From (2a) we have i ~! =i

and ;7! =3

il = 31 = gigi = (i9)i = (k)i = (k)i = ii = —1

Since the commutator is identity element of the group, this group is abelian so that the elements
commute. O

(¢) Construct a multiplication table for the quarternions.
Solution:
The multiplication table becomes

’ o H -1 i k ‘
-1 -1 ) 7
i i -1 k J
J j k-1 i
k k J i —1
This is the required multiplication table. O

3. (SMIN 4.6) Expand the series e~*72 explicitly and reduce to common trigonometric, algebraic or hyper-
geometric functions.
Solution:
The SU(2) rotation matrix with generator oo is M () = e~"%2. Expanding it out as a Taylor series gives

» ] 92 ] 93 94
e 72 = 1 — ifoy —035 +w§’§ —i—agz -

Since for the Pauli matrices 0? = 1 which implies that for odd powers the Pauli matrices are the matrices
themselves and for even power they reduce to identity, thus we can write

» . 02 . 03 94
e 1902:172902754’20254’]*
02 ot 63
:17§+E+72902+102§7

62 6 ) 63

= cosf — iogsin b



Writing out the explicit matrix form for identity <(1) (1)> and o9 = (? Oz) we get

; 10 0 —
_ _—ifoy __ o .
M=e¢e —COSH(O 1) Z(i 0)sm€
_ (cosf —sinf
~ \sinf  cosf
This is the required 2 x 2 matrix representation of e~ 72, O

. (SMIN 4.10) Consider a universe consisting of a complex field defined by two components
<Z>1>
O —
(&

L=0"'d19,® - m?®'o.

The Lagrangian takes the form

In some sense, there are four fields at work here, ¢2, ¢35, ¢1 and ¢j. But for the purpose of this problem,
you should generally think ® and ®' as representing the two different fields. Since each is a 2 — D vector,
there are still four degrees of freedom.

(a) Consider a rotation in SU(2) in ' direction (o). Expand M as infinite series, and express as a 2 x 2
matrix of only trigonometric functions of §*.

Solution:
The SU(2) rotation matrix with generator o, is M () = e~*?=. Expanding it out as a Taylor series
gives
. 92 63 94
—if0y _ . .
e 7 —1—19%—0354—20354—0‘?1—

Since for the Pauli matrices 0? = 1 which implies that for odd powers the Pauli matrices are the
matrices themselves and for even power they reduce to identity, thus we can write

) 62 93 94
—ibo, __ 1 _ _ ; _ _
e =1-—1ibo, 51 + 90, a0 + 1
62 6 63

62 o . 63

= cosf — io, sin6

Writing out the explicit matrix form for identity (é (1)) and o, = (? (1)> we get

; 1 0 0 1
_ _—ibo, __ o .
M=e¢ —COSG(O 1) Z(l O)st
_( cos@  —isinf
~ \—isinf cosf
This is the required 2 x 2 matrix representation of SU(2) representing rotation in ! direction. [

(b) Verify numerically that your matrix (¢) is unitary and (#¢) has a determinant of 1.
Solution:



Checking for Unitarity

cosf —isinf . cosf isind
—isinf  cos@ isinf cos@

( cos? 0 + (—isin 0)(isin 6) (icosfsinf) + (—i cos9sin9))

—icosfsinf) + (icosfsinh) cos? 0 + (—isin 0)(isin )

sin’ 0 —|— cos? 6 0
sin26 + cos? 0

)

This shows the matrix is unitary. Checking for determinant

| cos@  —ising| ) . - 2 2,
det{M} = Cising  cosf | = cosfcosf — (—isinf)(—isinfh) = cos” 6 +sin“ 6 = 1
The determinant of the matrix is also 1. O

(c) Compute a general expression for the current associated with the rotations in 6*.
Solution:
This Lagrangian is clearly invariant under the transformation ® — M ®. The generator of which is
o9 thus the conserved current is

L=g"9,9'9, —m*¢'e L =0"9'9,0 — m*o'e
oL oL
- — gM b = Vq) — IL(I)T
= a,en 9 =0 = 30,9 7

oL d® dot  oc

J‘u = - -
9(0,®) de | de 0(9,01)
= M1 (—ioy®) + (i0y®T)" P
=ioy (— (0"@") @ + &T0"D)
This gives the expression for conserved current. O



