
PHYS 631: General Relativity
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June 6, 2019

1. (Schutz 11.7) A clock is in a circular orbit at r = 10M in a Schwarzschild metric.
(a) How much time elapses on the clock during one orbit?

Solution:
The proper time and the interval are related by the expression dτ2 = ds2. For circular orbit dr =
dϕ = 0 so we get

dτ2 = ds2 = gϕϕ(Uϕ)
2dϕ2 =⇒ dτ = Uϕdϕ

But for circular orbit the quantity pϕ = mL̃ thus we obtain

Uϕ =
1

m
pϕ = gϕϕ

pϕ
m

=
1

r2
L̃

The quantity L̃2 = Mr
1−3M/r substituting these we get

Uϕ =
1

r2

√
Mr

1− 3M
r

The time elapsed is given by

τ =

τ∫
0

dτ =

2π∫
0

1

Uϕ
dϕ =

2π∫
0

√
r4(1− 3M/r)

Mr
dϕ

Noting that, the integrand is independent of ϕ, for circular orbit at r = 10M we obtain

τ = 2π

√
1000M3

M

(
1− 3M

10M

)
= 2π10

√
7M

This is the time elapsed in the clock. □

(b) It sends out a signal to ta distant observer once each orbit. What time interval does the distant
observer measure between receiving any two signals?
Solution:
The time elapsed for a distant observer is the coordinate time for the Schwarzschild metric. If it sends
signal every orbit, the time elapsed for distant observer is the coordinate time for one full orbit. To
find the coordinate time we have to get expression for dt = f(x⃗)dϕ, where t is the coordinate time.
From the definition of the ϕ component of four velocity

dϕ

dτ
= Uϕ =

pϕ

m
= gϕϕ

pϕ
m

= gϕϕL̃ =
1

r2
L̃

Similarly from the 0th component of four velocity we get

dt

dτ
= U0 =

p0

m
= g00

p0
m

= g00(−Ẽ) =
Ẽ

1− 2M/r
(1)
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Combining these two we get

dt

dϕ
=

dt/dτ

dϕ/dτ
=

(
r3

M

)1/2

Now that we have obtained the functional form connecting the coordinate time and azimuthal angle.
We can integrate to find

t = 2π

(
r3

M

) 1
2

For r = 10M we obtain

t = 2π

√
r3

M
= 2π

√
1000M3

M
= 2π10

√
10M. (2)

This is the coordinate time that passes for one orbit which is the time measured by the distant observer
and is also the time it elapses for distant observer for a complete revolution. □

(c) A second clock is located at rest at r = 10 next to the orbit of the first clock. How much time elapses
on it between successive passes of the orbiting clock?
Solution:
The time is dilated in the orbiting clock by the time dilation factor which is simply

dt

dτ
=

√
−1/g00 =

√
1− 2M/r

Now the proper time is given by

τ =

√
1− 2M

r
t

Substituting the coordinate time expression form (??) we get

τ =

√
1− 2M

r
2π

√
r3

M
(3)

Substituting r = 10M we obtain

τ = 2π
√
8M.

This gives the time elapsed in the stationary clock as the clock makes one orbit. □

(d) Calculate (??) again in seconds for an orbit at r = 6M where M = 14M⊙. This is the minimum
fluctuation time we expect in the X-ray spectrum of Cyg X-1: why?
Solution:
For r = 6M substituting r = 6M in (??) we get

t = 2π
√
216M = 12π

√
6 · 14M⊙

The mass of sun M⊙ = 1.9× 1030kg = 1.476× 103m. Substation these

t =
12π

√
6 · 1.476× 103

3× 108
= 0.00636s = 6.36× 10−3s

this is the time elapsed. □
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(e) If the orbiting ‘clock’ is the twin Artemis, in the obit in (??), how much does she age during the time
her twin Diana lives 40years far from the black hole and at rest with respect to it?
Solution:
We already have for a circular orbit from (??) we have

dt

dτ
=

Ẽ

1− 2M
r

For a stable orbit in the Schwarzschild metric we have

Ẽ =
1− 2M/r√
1− 3M/r

Substituting we get
dt

dτ
=

1√
1− 3M/r

Solving this differential equation we get∫
dτ =

∫ √
1− 3M

r
dt

Setting r = 6M gives

τ = t

√
1

2

For t = 40yr we get

τ =
40√
2
= 28.28yr

This is the age of Artemis when her twin Diana lives 40yr. □

2. (Schutz 11.21) A particle of m ̸= 0 falls radially toward the horizon of a Schwarzschild black hole of mass
M . The geodesic it follows has Ẽ = 0.95

(a) Find the proper time required to reach r = 2M from r = 3M .
Solution:
We have for a massive object the radial motion near the Schwarzschild metric satisfies:(

dr

dτ

)2

= Ẽ2 −
(
1− 2M

r

)
The proper time is then given by

τ =

∫
dr√

Ẽ2 − 1 + 2M
r

(4)

Making substituting α = Ẽ2 − 1 we get the following integral

τ =

∫
dr√

α+ 2M
r

The integral is

τ =

 2M
√
r

α
√
2M + αr

−
2M asinh

(√
2
√
α
√
r

2
√
M

)
α

3
2

+
r

3
2

√
2M + αr

2M

3M

=
3
√
3M

3
2

√
3Mα+ 2M

− 2
√
2M

3
2

√
2Mα+ 2M

+
2
√
3M

3
2

α
√
3Mα+ 2M

− 2
√
2M

3
2

α
√
2Mα+ 2M

+
2M asinh (

√
α)

α
3
2

−
2M asinh

(√
6
√
α

2

)
α

3
2
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Substituting α = 0.952 − 1 we obtain

τ = 1.1917M

This is the required time for the journey from 3M to 2M for a infilling particle. □

(b) Find the proper time required to reach r = 0 from r = 2M .
Solution:
Similar to previous part the proper time required is

τ =

 2M
√
r

α
√
2M + αr

−
2M asinh

(√
2
√
α
√
r

2
√
M

)
α

3
2

+
r

3
2

√
2M + αr

0

2M

=
2
√
2M

3
2

√
2Mα+ 2M

+
2
√
2M

3
2

α
√
2Mα+ 2M

− 2M asinh (
√
α)

α
3
2

Substituting α = 0.952 − 1 we obtain

τ = 1.3745M

This is the required time for the journey from 2M to center for a infalling particle. □

(c) Find, on the Schwarzschild coordinate basis, its four-velocity components ate r = 2.001M .
Solution:
For radially moving object Uϕ = Uθ = 0. The timelike component is given by

U0 = −g00Ẽ =
Ẽ

1− 2M
r

=
0.95

1− 2
2.001

= 1900.95

The radial component can be obtained by reusing (??) as

(Ur)2 = Ẽ2 −
(
1− 2M

r

)
=⇒ Ur =

√
0.952 − 1 +

2

2.001
= 0.949

Thus the four velocity is

Uµ =


1900.95
0.949
0
0


This is the component of four velocity at r = 2.001M □

(d) As it passes 2.001M , it sends a photon out radially to a distant stationary observer. Compute the
redshift of the photon when it reaches the observer.
Solution:
The energy observed by the distant observer is given by

Eobs = −U · p = −
(
−U0p

0 + Urp
r
)

We can calculate the component pr by using the fact that photon is massless. Since for photon we
have

p2 = −m2 = 0

Expanding the dot product of the momentum we get

gtt(p
t)2 + grr(p

r)2 = 0
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But we have pt = E so we can rewrite this as

gtt(pt)
2 + grr(p

r)2 = 0 =⇒ pr =

√
− gtt

grr
pt =

√
1− 2M

r

1− 2M
r

E = E

Substituting this in the observed energy expression we get

Eobs = (U0p
0 − Urp

r) =
(
U0p0 − Urp

r
)
= E(U0 − Ur)

But Ur = grrU
r = Ur

1−2M/r substituting U0 = 1900.95 and Ur = 0.949 we get

Eobs = E

(
1900.95 +

0.949

1− 2
2.001

)
= 3801.95E

This gives the observed energy of the photon. So the redshift factor is simply

z =
Eobs − E

E
=

3801.95E − E

E
= 3800.95

Which is the required redshift factor. □

3. Using the relations that we derived in class:

ay-stretching =
2M

r3
∆y and ax-compressing =

M

r3
∆x

Throughout this problem, assume that you dropped from rest at infinity.
(a) Find the smallest black hole in which you could survive long enough to pass the event horizon.

Solution:
In the event horizon r = 2M . The maximum acceleration that human can survive is amax ∼ 9g. So
we get

amax =
M

(2M)3
∆x =⇒ M =

√
∆x

4amax

Substituting ∆x ∼ 1m g ∼ 10m
s2 we get

M =

√
1

360
=

1

6
√
10

s

Since 1s = 299792458m and 1m = 1.34× 1027kg we get

M =
1

6
√
10

· 299792458 · 1.34× 1027 = 2.12× 1034kg = 1.07× 104M⊙

This is the most massive black hole one can survive near the event horizon. □

(b) For a 1M⊙ black hole, how long does it take between the time you feel mildly uncomfortable (tidal
force between head and feet is 2g) and you die? This should be in proper time, of course.
Solution:
The tidal force will stretch so we have from the given stretching expression

ay-stretching =
2M

r3
∆y =⇒ r =

(
2M∆y

a

) 1
3

For just being ‘uncomfortable‘ a = 2g gives

r =

(
2M⊙∆y

20

) 1
3
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Substituting M⊙ = 1.98× 1030kg and ∆y ∼ 0.5m

r = 4.56× 109(s2kg)1/3

Substituting 1s = 299792458m and 1kg = 7.42× 10−28m we get

r = 4.56× 109(2997924582 · 7.42× 10−28)1/3 = 1.85× 106m

For dying a = 9g we get through similar process

r = 2.76× 109(s2kg)1/3 = 2.76× 109(2997924582 · 7.42× 10−28)1/3 = 1.12× 106m

The proper time to travel between these two distance can be obtained by the expression as in Equation.
(??) above

τ =

∫
dr√

Ẽ2 − 1 + 2M
r

Here Ẽ is proportional to initial energy for simplicity assuming Ẽ = 1 we get

τ =

∫
1√
2M

√
rdr =

1√
2M

2

3
r

3
2 =

√
2

3

√
r3

M

Proper time between these two distances is

τ =

[√
2

3

√
r3

M

]r2

r1

For M = 1M⊙ we get

τ =

[√
2

3

√
r3

1.98× 1030

]1.12×106

1.85×106

= 4.45× 10−7

(
m3

kg

)1/2

Substituting 1kg = 7.42× 10−28m and 1m = 1
299792458s we get

τ = 4.45× 10−7
(
1.34× 1027m2

) 1
2 = 4.45× 10−7 · 1.22× 105s = 5.44× 10−2s

This gives the time for mild uncomfortably and death. □

(c) How about a 10M⊙
Solution:
Repeating the same process for M = 10M⊙ we get

r1 = 9.83× 109
(
s2kg

)1/3
= 3.98× 106m

r2 = 5.95× 109
(
s2kg

)1/3
= 2.41× 106m

τ = 4.44× 10−7

(
m3

kg

)1/3

= 5.426× 10−2s

So for a 10M⊙ the time interval for the falling person from mild uncomfortability to death is 5.42 ×
10−2s. □

4. (Schuts 12.9)
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(a) Show that a photon which propagates in a radial null geodesic of the metric, , has energy −p0 inversely
proportional to R(t).
Solution:
The given metric is

gµν =


−1 0 0 0

0 R2(t)
1−kr2 0 0

0 0 R2(t)r2 0
0 0 0 R2(t)r2 sin2 θ


For radial geodesic Uϕ = Uθ = 0. Since photon is massless we get

p · p = 0 =⇒ g00(p0)
2 + grr(pr)

2 = 0

Simplifying gives

(p0)
2 = −grr

g00
(pr)

2 =
R2(t)

1− kr2
(pr)

2 (5)

We now have to find the relationship between pr and the element of metric. The next relationship
comes from the geodesic equation as

ṗµ = Γµ
ρν

pρpν

p0

Specifically for µ = 0 we get

ṗ0 = Γ0
ρν

pρpν

p0

We need the Christoffel symbols for this. The Christoffel symbols are given by

Γµ
νρ =

1

2
gµσ

(
gνσ,ρ + gρσ,ν − gνρ,σ

)
The only required Christoffel symbols are Γ0

αβ

Γ0
νρ =

1

2
g00

(
gν0,ρ + gρ0,ν − gνρ,0

)
Explicitly

Γ0
rr =

1

2
g00

(
gr0,r + gr0,r − grr,0

)
=

1

2
(−1)

(
−∂t

(
R2(t)

1− kr2

))
=

Ṙ(t)R(t)

1− kr2

Substituting this in the geodesic equation we get

ṗ0 = − Ṙ(t)R(t)

1− kr2
prpr

p0

But from (??) we have (pr)2 and substituting we get

ṗ0 = − Ṙ(t)R(t)

1− kr2
(1− kr2)(p0)2

R2(t)p0

ṗ0 = − Ṙ(t)

R(t)
p0

This is a differential equation , solving we get

dp0

p0
= −dR(t)

R(t)
ln
(
p0
)
= − ln(R(t)) =⇒ p0 ∝ 1

R(t)
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Lowering the index of p0 in the LHS we get

p0 = g00p
0 = −p0 =⇒ p0 ∝ − 1

R(t)

Which is the required expression. □

(b) Show from this that a photon emitted at time te and received a time tr by observers at rest in the
cosmological reference from is redshift ed by

1 + z =
R(tr)

R(te)

Solution:
For an observer at rest vi = 0 =⇒ U i = 0. Using U · U = −1 gives

g00(U
0)2 = −1 =⇒ U0 =

√
− 1

g00
= 1

thus the observed energy is

Eobs = −p · Uobs = −p0U
0 = −p0

calculating the redshift we get

z =
Eobs(te)− Eobs(tr)

Eobs(tr)
=

− 1
R(te)

+ 1
R(tr)

− 1
R(tr)

=

Simplifying

1 + z = 1 +
− 1

R(te)
+ 1

R(tr)

− 1
R(tr)

=
R(tr)

R(te)

This is the required expression. □

5. (Schuts 12.20) Assume that the universe is matter dominated and find the value of ρΛ that permits the
universe to be static.

(a) Because the universe is matter-dominated at the present time, we can take ρm(t) = ρ0

[
R0

R(t)

]3
where

the subscript 0 refers to the static solution we are looking for. Differentiate the ‘energy’ equation
1

2
Ṙ2 = −1

2
k +

4

3
πR2 (ρm + ρΛ) (6)

with respect to time to find the dynamical equation governing a matter dominated universe:

R̈ =
8

3
πρΛR− 4

3
πρ0R

3
0R

−2

Set this to zero to find the solution

ρΛ =
1

2
ρ0

For Einstein’s static solution, the cosmological constant energy density has to be half of th matter
energy density.
Solution:
As instructed, differentiating with respect to tie we get

1

2
· 2 · R̈Ṙ =

8

3
πRṘ(ρm + ρΛ) +

4

3
πR2 (ρ̇m + ρ̇Λ)

R̈ =
8

3
πR(ρm + ρΛ) +

4

3
πR2 (ρ̇m + ρ̇Λ)
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But the functional form of ρm(t) is given differentiating we get

ρ̇m = −3
R3

0ρ0Ṙ

R4

And for matter dominated universe ρ̇Λ = 0 substituting these

R̈Ṙ =
8

3
πRṘ (ρm + ρΛ)− 4π

ρ0R
3
0Ṙ

R2

R̈ =
8

3
πR (ρm + ρΛ)− 4π

ρ0R
3
0

R2

Which is the required dynamical equation. At current time we have R = R0 so we get

R̈ =
8

3
R0 (ρ0 + ρΛ)− 4ρ0R0 =

8

3
R0ρΛ − 4

3
R0ρ0

Setting this equal to zero we get

8

3
R0ρΛ =

4

3
R0ρ0

We obtain

ρΛ =
1

2
ρ0

This is the required expression. □

(b) Put our expression for ρm into the right-hand-side of (??) to gen an energy-like expression which has
a derivative that has to vanish for a static solution. Verify that the above condition of ρΛ does indeed
make the first derivative vanish.
Solution:
Substituting ρm we obtain

1

2
Ṙ2 = −1

2
k +

4

3
πR2

(
ρ0R

3
0

R3
+

1

2
ρ0

)
For static solution the second term on the right has to have vanishing derivative because the first
being constant has zero derivative already. Checking

∂

∂R

[
4

3
πR2

(
ρ0R

3
0

R3
+

1

2
ρ0

)]
=

4

3
πρ0

∂

∂R

[(
R3

0

R
+

R2

2

)]
=

4

3
πρ0

[(
−R3

0

R2
+R

)]
For initial time we have R = R0 this expression evaluates to zero. □

(c) Compute the second derivative of the right-hand-side of (??) with respect to R and show that, the
static solution, it is positive. This means that the ‘potential‘ is a minimum and Einstein’s static
solution is stable.
Solution:
The second derivative is

4

3
πρ0

∂

∂R

[(
−R3

0

R2
+R

)]
=

4

3
πρ0

[(
2
R3

0

R3
+ 1

)]
For today R = R0 and we get

4

3
πρ0

[(
2
R3

0

R3
0

+ 1

)]
=

4

3
πρ0

[(
2
R3

0

R3
0

+ 1

)]
= 4πρ0

For ρ > 0 the second derivative is positive. This means the solution is stable. □
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