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1. Consider a 1+1 dimensional space (t, x) with the metric:

gµν =

(
−ekx 0
0 1

)
where k is a dimensional constant.
(a) This metric has a stress-energy source which is (potentially) non-zero. Knowing nothing else, what is

the scaling of the density ρ in terms of k?
Solution:
Since the exponent in the metric has to be dimensionless the dimension of k is

[k] = [L] = [M ]

The dimension of density is

[ρ] =
[M ]

[L]3
= [L]2

From these two expressions

ρ ∼ k2

So, in terms of dimension only the density has to scale as the square of k. �

(b) Compute all non-zero Christoffel symbols.
Solution:
The non zero derivative of the metric is in terms of x only and the only non zero derivative is

gtt,x = −kekx

The Christoffel symbols are given by

Γµ
νρ =

1

2
gµσ

(
gνσ,ρ + gρσ,ν − gνρ,σ

)
The non zero Christoffel symbols are

Γx
tt =

1

2
gxx (−gtt,x) =

1

2
· (−1) · −kekx =

1

2
kekx

The other are

Γt
tx = Γt

xt =
1

2
k

These are the required non zero Christoffel symbols. �
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(c) A massive particle is instantaneously at rest ate x = 0 . What is the instantaneous acceleration of the
particle?
Solution:
The geodesic equation can be used to calculate the acceleration of the particle. From the geodesic
equation we have

∂Uµ

∂τ
= −Γµ

αβU
αUβ

For particle at rest vi = 0, =⇒ U i = 0. Using U · U = −1 we get

(U0)2g00 = −1 U0 = ekx/2

Since the only non zero Christoffel symbols are Γt
tx and Γx

tt we get

∂Ux

∂τ
= −Γx

ttU
0U0 = −1

2
kekxekx

At the origin thus x = 0 we get

∂Ux

∂τ
= −1

2
k

This gives the acceleration of the particle. �

(d) Compute the non-zero components of the Riemann tensor.
Solution:
And the Riemann tensor is given by

Rα
βµν = Γα

σµΓ
σ
βν − Γα

σνΓ
σ
βµ − Γα

βµ,ν
+ Γα

βν,µ

calculating

Rx
txt = Γx

σxΓ
σ
tt − Γx

σtΓ
σ
tx − Γx

tx,t + Γx
tt,x

= −Γx
ttΓ

t
tx + Γx

tt,x

= −1

2
k · 1

2
kekx +

1

2
k2ekx

=
1

4
k2ekx

Similarly the other component of Riemann tensor are

Rt
xtx = −1

4
k2

The other components are simply the cyclic permutation of the indices. �

(e) What are the non-zero terms in the Ricci Tensor and Ricci Scalar?
Solution:
The components of Ricci tensor in terms of elements of Riemann Tensor are

Rαβ = gµνRν
αµβ

Specifically for Rtt we get

Rtt = gtt�
��>

0
Rt

ttt + gxxRx
txt

=
1

4
k2ekx
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Similarly the other component Rxx is

Rxx = gttRt
xtx +�����:0

gxxRx
xtx

= −e−kx · 1
4
k2ekx

= −1

4
k2

The Ricci scalar can be calculated by contracting the Ricci tensor as

R = Rt
t +Rx

x = gttRtt + gxxRxx = −1

4
k2 − 1

4
k2 = −1

2
k2 (1)

So the Riccis scalar is −1/2k2. �

(f) What is the Einstein tensor?
Solution:
The components of Einstein tensor are given by

Gµν = Rµν − 1

2
gµνR (2)

The first component of this tensor is

Gtt = Rtt −
1

2
gttR =

1

4
k2ekx +

1

2
e−kx · −1

2
k2 = 0

The other component is

Gxx = Rxx − 1

2
gxxR = −1

4
k2 − 1

2
· −1

2
k2 = 0

So the Einstein tensor is identically zero. �

2. In the generalized linear metric we found in class:
−1− 2ψ 0 0 0

0 1− 2φ 0 0
0 0 1− 2φ 0
0 0 0 1− 2φ


where, for a non-relativistically moving source:

∇2 = 4π(ρ+ 3P ); ∇2φ = 4πρ

suppose you were in the interior of a spherically symmetric distribution with constant density and fixed
equation of sate w = − 1

3

(a) What is the acceleration on a test particle places a distance r from the center of the cloud. Would it
fall inward or outward?
Solution:
Since ψ and φ are functions of r only we have non zero derivative of the components of metric only
with respect to r. The Christoffel symbols are given by

Γµ
νρ =

1

2
gµσ

(
gνσ,ρ + gρσ,ν − gνρ,σ

)
The non zero Christoffel symbols are

Γt
tr = Γt

rt =
1

2
gtt
(
gtt,r +���*

0
grt,t −���:0gtr,r

)
=

1

2

−1

1 + 2ψ
(−2ψ,r)

=
ψ,r

1 + 2ψ
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Similarly the other non zero Christoffel symbols are

Γr
tt =

ψ,r

1− 2φ
Γr

rr = − φ,r
1− 2φ

For a stationary particle vi = 0 =⇒ U i = 0. Using U · U = −1 we get

(U0)2g00 = −1 =⇒ U0 =
√
1 + 2ψ

The geodesic equation can be used to calculate the acceleration of the particle. The geodesic equation
is

∂Uµ

∂τ
= −Γµ

αβU
αUβ

The spatial acceleration of the particle is

∂Ur

∂τ
= Γr

ttU
0U0 =

ψ,r

1− 2φ
(1 + 2ψ)

The quantity ψ,r can be calculated by using the fact that the Laplacian of ψ is given. In a spherically
symmetric system ∇2 ≡ ∂2

∂r2 , so we get

∂2ψ

∂r2
= 4π(ρ+ 3P )

Integrating once with respect to r we get

dψ

dr
= ψ,r = 4πρ

(
1 + 3

P

ρ

)
r

Subsisting this in the expression for acceleration we get

∂Ur

∂τ
=

ψ,r

1− 2φ
(1 + 2ψ) = 4πρ(1 + 3w)r · 1 + 2ψ

1− 2φ

Given that w = − 1
3 we get

∂Ur

∂τ
= 0 · 1 + 2ψ

1− 2φ
= 0

So the radial acceleration of the particle is zero. Since for i 6= r, U i = 0 and Γi
tt = 0 all other spa-

tial components of acceleration is zero. So the spatial acceleration of the particle is identically zero. �

(b) What is the acceleration on a photon traveling perpendicular to the cloud also a distance r from the
center. Would it be lensed inward or outward?
Solution:
Since the photon is trailing perpendicular to the cloud (in a straight line), we can assume (without loss
of generality) the radial and azimuthal components of the velocity are zero, by choosing the direction
of travel same as the radial coordinate. So, Uθ = 0, Uφ = 0 The spatial acceleration of the photon is

∂Ur

∂τ
= Γr

ttU
0U0 + Γr

rrU
rUr

Subsisting the Christoffel symbols we get

∂Ur

∂τ
=

ψ,r

1− 2φ
(U0)2 − φ,

1− 2φ
(Ur)2

4



Again by arguments of previous problem ψ,r = 0, so we get

∂Ur

∂τ
= − φ,r

1− 2φ
(Ur)2

Again, in a spherically symmetric system ∇2 ≡ ∂2

∂r2 , we can similarly obtain φ,r and φ by integrating
the Laplacian of φ with respect to r once and twice respectively.

φ,r = 4πρr φ = 2πρr2

Since φ � 1, (Ur)2 > 0 and φ,r = 4πρr > 0 the final expression for the acceleration will turn out to
be negative. Thus the acceleration would be inward and hence the photon will be lensed inward. �

3. (Schutz 8.17)
(a) A small planet orbits a static neutron star in a circular orbit whose proper circumference is 6× 1011

m. The orbital period takes 200days of the planet’s proper time. Estimate the mass M of the star.
Solution:
For the purpose of estimation we can assume that Newton’s laws hold and that the time dilation effect
is negligible. In that limit the proper time is just the time measured by observer. From Kepler’s third
law we have

t2 =

(
4π2

GM

)
r3

If c is the circumference, it is given in terms of radius by, c = 2πr subsisting c we get

t2 =
c3

2πGM
=⇒ M =

1

2πG

c3

T 2

So for the given planet

t ≈ τ = 200days = 1.728× 107s c = 6× 1011m

So the mass is given by

M =
1

2π · 6.672× 10−11

(6× 1011)3

(1.728× 107)2
= 1.726× 1030kg

So the mass of the neutron star is 1.726× 1030kg. �

(b) Five satellites are placed into a circular orbit around a static black hole. The proper circumferences
and proper periods of their orbits are given in a table below. Use the method of 3a to estimate the
hole’s mass. Explain the results you get for the satellites

circumference 2.5× 106 m 6.3× 106 m 6.3× 107 3.1× 108 m 6.3× 109 m
proper period 8.4× 10−3 s 0.055s 2.1s 23s 2.1× 103 s

Solution:
Using the method of 3a we get

c(m) t(s) 1
2πG

(
c3

t2

)
kg

2.5× 106 8.4e-3 5.28× 1032

6.3× 106 0.055 1.97× 1032

6.3× 107 2.1 1.35× 1032

3.1× 108 23 1.34× 1032

6.3× 109 2.1× 103 1.35× 1032

The obtained value for the mass seem to be converging towards 1.35 × 1032kg with the successive
increase in the orbital circumference. So further away the satellite, the Newtonian approximation are
more correct. �
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4. (Schutz 8.18) Consider the field equation with cosmological constant. With Λ arbitrary and k = 8π.
(a) Find the Newtonian limit and show that we recover the motion of the planets only if |Λ| is very

small. Given the radius of Pluto’s orbit is 5.9× 1012 m, set an upper bound on |Λ| from solar-system
measurements
Solution:
The field equation is

Gµν + Λgµν = 8πTµν

Newtonian equation of motion is given by

∇2φ = 4πρ

specifically the first component of field equation

G00 = 8πT00 − Λg
00

In the Newtonian limit, since T00 = ρ and g00 = −1, I would expect in field equation term

ρ→ ρ+
Λ

8π

I am assuming the limit to Λ comes from the maximum estimation of the mass density ρ in the solar
system. Even if the space wre empty and only cosmological constant were present of that value, we
would get the orbital radius of Pluto. So maximum value Λ < ρ × 8π. The measured density of the
solar system is in the order

∼ 1.3× 10−22 g

cc
= 1.3× 10−19 kg

m3

and so maximum Λ should be the same order. �

(b) By bringing Λ over th the RHS of Schutz eq 8.7 we can regard −Λgµν/8π as the stress-energy tensor
of ‘empty space’. Given that he observed mass of the region of the universe near our Galaxy would
have a density of about 1× 10−27 kgm3 if it were uniformly distributed, do you think that a value of
|Λ| near the limit you established in 4a could have observable consequences for cosmology? Conversely
if Λ is comparable to the mass density of the universe, do we need to include it in the equations when
we discuss the solar system?
Solution:
If Λ is is in the order as predicted in 4a, and the density of galaxy is in the order of 1× 10−27kg/m3

then

Λ � ρgalaxy

In that case ρ → ρ + Λ
8π would be dominated by Λ, so we would have to observable effect of the

cosmological constant.
If the value of Λ is comparable to the density of the universe, then I would still assume that we would
need to include in the calculation of solar system. �

5. (Schuts 10.9)
(a) Define a new radial coordinate in terms of the Schwarzschild r by

r = r̄

(
1 +

M

2r̄

)2

.

Notice that as r → ∞, r̄ → r , while the event horizon r = 2M , where we have r̄ = 1
2M . Show that

the metric for spherical symmetry takes the form

ds2 = −
[
1− 2M/r̄

1 +M/r̄

]2
dt2 +

[
1 +

M

2r̄

]4 [
dr̄2 + r̄2dΩ2

]
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Solution:
The Schwarzschild metric is

gµν =


−(1− 2M/r) 0 0 0

0 1/(1− 2M/r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ


The transformation of the elements of metric can be obtained by

gµ̄ν̄ = Λµ
µ̄Λ

ν
ν̄gµν

where the elements of the transformation matrix Λµ
µ̄ are given by

Λµ
µ̄ =

∂xµ

∂xµ̄

Since the given metric is diagonal, the only non zero term in the metric gµν are with µ = ν. Expanding
the metric transformation explicitly as a sum

gµ̄ν̄ = Λµ
µ̄Λ

µ
ν̄gµµ

Given the transformation r → r̄(1 +M/2r̄)2 and all other coordinates are unchanged we get

Λr
r̄ =

∂r

∂r̄
=

∂

∂r̄

(
r̄

(
1 +

M

2r̄

)2
)

=

(
1 +

M

2r̄

)2

+ 2r̄

(
1 +

M

2r̄

)(
− M

2r̄2

)
=

(
1 +

M

2r̄

)(
1 +

M

2r̄
− M

r̄

)
=

(
1 +

M

2r̄

)(
1− M

2r̄

)
for all other coordinates t̄ = t, φ̄ = φ, θ̄ = θ so we get

Λθ
θ̄ = Λφ

φ̄
= Λt

t̄ = 1

Λµ
ν̄ = 0 if µ 6= ν

Thus expanding the transformation of the metric explicitly we get

gt̄t̄ = Λt
t̄Λ

t
t̄gtt = gtt = −

(
1− 2M

r

)
Under the given transformation we have

1− 2M

r
= 1− 2M

r̄ (1 +M/2r̄)
2 =

r̄ (1−M/2r̄)
2 − 2M

r̄ (1 +M/2r̄)
2 =

(
1− M

2r̄

)2(
1 + M

2r̄

)2 (3)

So under the transformed coordinate system we get

gt̄t̄ = − (1−M/2r̄)
2

(1 +M/2r̄)
2

The nexe component of the metric is

gr̄r̄ = Λr
r̄Λ

r
r̄grr =

[(
1 +

M

2r̄

)(
1− M

2r̄

)]2(
1− 2M

r

)−1
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Using (3) we get in this expression we get

gr̄r̄ =

[(
1 +

M

2r̄

)(
1− M

2r̄

)]2
(1 +M/2r̄)

2

(1−M/2r̄)
2

=

(
1 +

M

2r̄

)4

The next component of the transformed metric is

gθ̄θ̄ = Λθ
θ̄Λ

θ
θ̄gθθ = gθθ = r2 = r̄2

(
1 +

M

2r̄

)4

The final non zero component is

gφ̄φ̄ = Λφ

φ̄
Λφ

φ̄
gφφ = gφφ = r2 sin2 θ = r̄2

(
1 +

M

2r̄

)4

sin2 θ

Thus the final transformed metric is

gµ̄ν̄ =


− (1−M/2r̄)2

(1+M/2r̄)2 0 0 0

0 (1 +M/2r̄)4 0 0

0 0 r̄2 (1 +M/2r̄)
4

0

0 0 0 r̄2 (1 +M/2r̄)
4
sin2 θ


The line element in this metric is given by

ds2 = −
[
1− 2M/r̄

1 +M/r̄

]2
dt2 +

[
1 +

M

2r̄

]4 [
dr̄2 + r̄2dθ2 + r̄2 sin2 θdφ2

]
(4)

Which is the required expression. �

(b) Define a quasi-Cartesian coordinates by the usual equations x = r̄ cosφ sin θ, y = r̄ sinφ sin θ , and
z = r̄ cos θ so that , dr̄2+ r̄2dΩ2 = dx2+dy2+dz2 Thus the metric has been converted into coordinates
(x, y, z), which are called isotropic coordinates. Now take the limit as r̄ → ∞ and show

ds2 = −
[
1− 2M

r̄
+O

(
1

r̄2

)]
dt2 +

[
1 +

2M

r̄
+O

(
1

r̄2

)] (
dx2 + dy2 + dz2

)
Solution:
Under the transformation given

dr̄2 + r̄2dθ2 + r̄2 sin2 θdφ2 = dx2 + dy2 + dz2

Under the limit r̄ → ∞, the metric element gt̄t̄ can be simplified

gt̄t̄ =
(1−M/2r̄)2

(1 +M/2r̄)2
= −

(
1− M

2r̄

)2(
1 +

M

2r̄

)−2

=

(
1− M

r̄
+O

(
1

r̄2

))(
1− M

r̄
+O

(
1

r̄2

))
=

(
1− M

r̄
− M

r̄
+
M2

r̄2
+O

(
1

r̄2

))
=

(
1− 2M

r̄
+O

(
1

r̄2

))
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Similarly under the approximation grr

gr̄r̄ =

(
1 +

M

2r̄

)4

= 1 +
2M

r̄
+O

(
1

r̄2

)
Subsisting this in the line element expression (4) we get

ds2 = −
[
1− 2M

r̄
+O

(
1

r̄2

)]
dt2 +

[
1 +

2M

r̄
+O

(
1

r̄2

)] (
dx2 + dy2 + dz2

)
This is the required expression. �

(c) Compute the proper circumference of a circle at radius r̄
Solution:
The circumference is given by the total distance traveled by a particle going at a constant distance r̄
from the center, which is the length of the line under φ : 0 → 2π The line element is

ds2 = gφ̄φ̄dφ
2

So the total circumference is

C =

2π∫
0

√
r̄2
(
1 +

M

2r̄

)4

dφ = 2πr̄

(
1 +

M

2r̄

)2

Which is the proper circumference. �

(d) Compute the proper distance in traveling from r̄ to r̄ + dr̄.
Solution:
The line element is

ds2 = gr̄r̄dr̄
2

The length going from r̄ → r̄ + dr̄ is

ds =
√
gr̄r̄dr̄ =

√(
1 +

M

2r̄

)4

dr̄ =

(
1 +

M

2r̄

)2

dr̄

This gives the distance going from r̄ → r̄ + dr̄. �
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