
PHYS 631: General Relativity
Homework #2

Prakash Gautam

April 25, 2019

1. A particle in Minkowski space travels along a trajectory:

x(τ) = ατ2

y(τ) = τ

z(τ) = 0

(a) What are the spacelike components of the 4-velocity, U i?
Solution:
The spacelike components of four velocity is

U i =
∂xi

∂τ
= (2ατ, 1, 0)

□

(b) Using the relation U · U = −1, compute U0.
Solution:
The inner product of the four velocity vector Uµ = (U0U1U2U3) is

U · U = −(U0)2 + (U1)2 + (U2)2 + (U3)2 = −1

=⇒ −(U0)2 + 4α2τ2 + 1 + 0 = −1

=⇒ U0 = ±
√

2 + (2ατ)2

This is the timelike component of velocity four vector. □

(c) What is the 3-velocity of the particle as a function of τ?
Solution:
The spacelike components are given by

V i =
U i

U0
=

(
2ατ√

2 + (2ατ)2
,

1√
2 + (2ατ)2

, 0

)

□

2. (Schutz 3.24) Give the components of
(
2
0

)
tensor Mαβ as the matrix


0 1 0 0
1 −1 0 2
2 0 0 1
1 0 −2 0


find:
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(a) the components of symmetric tensor M (αβ) and antisymmetric tensor M [αβ]

Solution:
The symmetric tensor can be written as

M (αβ) =
1

2

(
Mαβ +Mβα

)
When the indices are switched the elements of the tensor are

0 1 2 1
0 −1 0 0
0 0 0 −2
0 2 1 0


Using this we get the symmetric form

M (αβ) =


0 1 1 1/2
1 −1 0 1
1 0 0 −1/2
1/2 1 −1/2 0


Similarly the anti symmetric tensor is

M [αβ] =


0 0 −1 −1/2
0 0 0 1
1 0 0 3/2
1/2 −1 −3/2 0


These are the required matrices. □

(b) the components of Mα
β

Solution:
This can be written with the metric tensor as

Mα
β = gσβM

ασ =


0 1 0 0
−1 −1 0 2
−2 0 0 1
−1 0 −2 0


□

(c) the components of Mβ
α

Solution:
This can be written with th metric as

Mα
β = gασM

σβ =


0 −1 0 0
1 −1 0 2
2 0 0 1
1 0 −2 0


□

(d) the components of Mαβ

Solution:
The previous tensor can be used to calculate this

Mαβ = gσβMα
σ =


0 −1 0
−1 −1 0 2
−2 0 0 1
−1 0 −2 0


□
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3. (Schutz 3.30) In some O , the vector U and D have the components

U → (1 + t2, t2,
√
2t, 0)

D → (x, 5tx,
√
2t, 0)

and the scalar ρ has the value

ρ = x2 + t2 − y2

(a) Find U · U , U ·D , D ·D. Is U suitable as four-velocity field? Is D?
Solution:
The components of Uµ are Uµ = (−(1 + t2), t2,

√
2t, 0) and the components of Dµ are Dmu =

(−x, 5tx,
√
2t, 0) so the dot products are

U · U = UµUmu = (−(1 + t2)2 + t4 + 2t2 + 0) = −1− 2t2 − t4 + t4 + 2t2 = −1

D ·D = DµDµ = (−x2 + 25t2x2 + 2t2 + 0) = x2(25t2 − 1) + 2t2

U ·D = UµDµ = −x(1 + t2) + 5t3x+ 2t2 = x(5t3 − t2 − 1) + 2t2

Since the inner product of U with itself is −1 its is suitable for a four velocity while D is not (except
possibly for fixed values of x and t). □

(b) Find the spatial velocity v of a particle whose four-velocity is U„ for arbitrary t. What happens to it
in the limits t → 0 and t → ∞?
Solution:

vi =
U i

U0
=

(
t2

1 + t2
,

√
2t

1 + t2
, 0

)
In the limit t → ∞ we get v = (1, 0, 0) and in the limit t → 0 we get v = (0, 0, 0) □

(c) Find Uα for all α
Solution:
With the Minkowski metric the values of Uα is Uα = (−(1 + t)2, t2,

√
2t, 0) □

(d) Find Uα
,β for all α, β

Solution:
The vales are

Uα
,β =

∂Uα

∂xβ
=


2t 0 0 0
2t 0 0 0√
2 0 0 0
0 0 0 0


□

(e) Show that Uα
α ,β = 0 for all β. Show that UαUα,β = 0 for all β.

Solution:
For various values of β UαU

α
,β is

β = 0 :: UαU
α
,0 =

∂

∂t

(
−(1 + t2)2 + t4 + 2t

)
= −2(1 + t2) · 2t+ 4t3 + 4t = 0

β = 1 :: UαU
α
,1 =

∂

∂x

(
−(1 + t2)2 + t4 + 2t

)
= 0

β = 2 :: UαU
α
,2 =

∂

∂y

(
−(1 + t2)2 + t4 + 2t

)
= 0

β = 3 :: UαU
α
,3 =

∂

∂z

(
−(1 + t2)2 + t4 + 2t

)
= 0
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We have UαUα is the inner product of U · U and so U · U = UαUα = UαU
α so the expression

UαUα,β = (UαU
α),β = 0,∀β

□

(f) Find Dβ
,β

Solution:
It is simply the divergence of vector D so we get

Dβ
,β =

∂x

∂t
+

∂5tx

∂x
+

∂
√
2t

∂y
+

∂0

∂z
= 5t

□

(g) Find (UαDβ),β for all α.
Solution:
The components of tensor UαDβ are

UαDβ =


(1 + t2)x 5tx(1 + t2)

√
2t(1 + t2) 0

t2x 5t3x
√
2t3 0√

2tx 5
√
2t2x 2t2 0

0 0 0 0


Now the derivatives (UαDβ),β has the components

α = 0 : 2tx+ 5t(1 + t2) + 0 + 0 = 2tx+ 5t(1 + t2)

α− 1 : 2tx+ 5t3 + 0 + 0 = 2tx+ 5t3

α = 2 :
√
2x+ 5

√
2t2 + 0 + 0 =

√
2x+ 5

√
2t2

α = 3 : 0

So the components are (UαDβ),β = (2tx+ 5t(1 + t2), 2tx+ 5t3,
√
2x+ 5

√
2t2). □

(h) Find Uα(U
αDβ),β and compare result.

Solution:
We have the components of Uα = (−(1 + t2), t2,

√
2t, 0) and we have obtained

Mα = (UαDβ),β = (2tx+ 5t(1 + t2), 2tx+ 5t3,
√
2x+ 5

√
2t2)

Uα(U
αDβ),β = UαM

α

= (−(1 + t2)(2tx+ 5t(1 + t2)) + t2(2tx+ 5t3) +
√
2t(

√
2xt+ 5

√
2t2))

= −5t

We see that this is equal to −Dβ
,β and using the fact that UαU

α = −1 we can rewrite

Uα(U
αDβ),β = −Dβ

,β = (UαU
α)Dβ

,β

This shows that the associative property in tensors hold. □

(i) Find ρ,α for all α. Find ρ,α for all α
Solution:
The components are

ρ,α =

(
∂ρ

∂t
,
∂ρ

∂x
,
∂ρ

∂y
,
∂ρ

∂z

)
= (2t, 2x,−2y, 0)
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The raised version is

ρ,β = (−2t, 2x,−2y, 0)

□

4. (Schuts 4.17) We have defined aµ = Uµ
,βU

β . Go to the non-relativistic limit and show that

ai = v̇i + (v ·∇)vi

Solution:
Writing out the components of the above expression we get

aµ =
∂Uµ

∂x0
U0 +

∂U i

∂x1
U1 +

∂U i

∂x2
U2 +

∂U i

∂x3
U3

The spatial components are

ai =
∂U i

∂x0
U0 +

∂U i

∂x1
U1 +

∂U i

∂x2
U2 +

∂U i

∂x3
U3

In the non relativistic limit U0 = 1 and U i = vi where vi is the component of velocity so we obtain

ai =
∂vi

∂t
+

∂vi

∂x
vx +

∂vi

∂y
vy +

∂vi

∂z
vz

This expression can be rearranged into

ai = v̇i + (vxî+ vy ĵ + vzk̂) ·
(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
vi

Since the nabla operator is the middle term in above expression we get

ai = v̇i + (v ·∇)vi

This is the required expression. □

5. Consider a stationary, ideal fluid of the form:

Tµν =


ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P


For the moment, you should assume that the stress-energy tensor is constant in time and throughout space
(a) Compute the stress energy tensor T µ̄ν̄ in a frame moving at a speed, v with respect to th frame along

the x-axis.
Solution:
The transformation matrix is

Λµ̄
µ


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 0


The components of the transformed tensor are

T µ̄ν̄ = Λµ̄
µ

[
Λν̄
νT

µν
]

= Λµ̄
µ

[
Λν̄
0T

µ0 + Λν̄
1T

µ1 + Λν̄
2T

µ2 + Λν̄
3T

µ3
]
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Since the off diagonal elements of Tµν are all zeros we get zeros for all j

T µ̄ν̄ = Λµ̄
0

[
Λν̄
0T

00
]
+ Λµ̄

1

[
Λν̄
1T

11
]
+ Λµ̄

2

[
Λν̄
2T

22
]
+ Λµ̄

3

[
Λν̄
3T

33
]

So we get the transformed tensor as
γ2ρ+ γ2v2P γ2vρ+ γ2vP 0 0
γ2vρ+ γ2vP γ2v2P + γ2ρ 0 0

0 0 P 0
0 0 0 P

 =


γ2(ρ+ v2P ) γ2v(ρ+ P ) 0 0
γ2v(ρ+ P ) γ2(v2ρ+ P ) 0 0

0 0 P 0
0 0 0 P


This is the required transformed tensor. □

(b) Suppose the pressure is a fixed ratio to the density. Compute the stress energy tensor in the moving
frame for i) P = 0 (dust), ii) P= 1/3ρ (radiation ) iii) P = −ρ (cosmological constant).
Solution:
for P = 0 we get 

γ2ρ γ2vρ 0 0
γ2vρ γ2v2ρ 0 0
0 0 0 0
0 0 0 0


for P = 1/3 ρ we get 

γ2(ρ+ v2 1
3ρ) γ2v( 43ρ) 0 0

γ2v( 43ρ) γ2(v2ρ+ 1
3ρ) 0 0

0 0 1
3ρ 0

0 0 0 1
3ρ


for P = −ρ we get 

ρ 0 0 0
0 −ρ 0 0
0 0 −ρ 0
0 0 0 −ρ


These are the transformed tensor. □

6


