PHYS 631: General Relativity

Homework #1

Prakash Gautam

April 11, 2019

- 1. (Geometrized Units) Express each of the pollowing quantities in two ways: i) in m^n , as meters raised to some appropriate power, and ii) in kg^n as kilograms raised to the appropriate power.
 - (a) The momentum of an electron moving at 0.8*c*. Solution:

The gamma factor γ is

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}} = \frac{1}{\sqrt{1 - .8^2}} = 1.67$$

The mass of electron is $m_e = 1.21 \times 10^{-31}$ kg. So the momentum is

$$p = mv\gamma = 9.1 \times 10^{-31} \cdot 0.8 \cdot 1.67 = 1.21 \times 10^{-30} kg$$

Since the conversion factor is $1m = 1.35 \times 10^{27} kg$ we get

$$p = 1.21 \times 10^{-30} \left(1.35 \times 10^{27} \right)^{-1} = 8.96 \times 10^{-58} m$$

These are the required values of momentum in each unit.

(b) The age of universe (13.8)Gy Solution:

The age(A) in seconds is

$$A = 13.8 \times 10^9 \cdot 365 \cdot 24 \cdot 60 \cdot 60 = 4.35 \times 10^{17} s$$

The conversion factor is $1s = 3 \times 10^8$ m so we get

$$A = 4.35 \times 10^{17} \cdot 3 \times 10^8 = 1.3 \times 10^{26} m$$

Since the conversion factor is $1m = 1.35 \times 10^{27} kg$ we get

$$A = 1.3 \times 10^{26} \cdot 1.35 \times 10^{27} = 1.74 \times 10^{53} kg$$

These are the required values.

(c) The orbital speed of the earth.

Solution:

The mass of Earth is $M = 6 \times 10^{24} kg$ which with the conversion factor $1m = 1.35 \times 10^{27}$ kg becomes $M = 4.45 \times 10^{-3}m$ and the readius of earth (R) is $R = 6.4 \times 10^6 m$ and for our units G = 1 The orbital speed (v) is given by

$$v^{2} = \frac{GM}{R} = \frac{4.45 \times 10^{-3}m}{6.4 \times 10^{6}m} = 6.97 \times 10^{-10}m^{0}$$
$$v = 2.64 \times 10^{-5}m^{0}$$

Since the orbital speed is dimensionless, it has to have same value in kg unit also so

$$v = 2.64 \times 10^{-5} kg^0$$

These are the required values for orbital speed in each units.

2. (Schutz 1.3) Draw t and x axes of the spacetime coordinates of an observer \mathcal{O} and then draw:

- (a) The world line \mathcal{O} 's clock at x = 1m.
- (b) The world line of a particle moving with velocity $\frac{dx}{dt} = 0.1$, and which is at x = 0.5m and when t = 0. (c) The \bar{t} and \bar{x} axes of an observer $\bar{\mathcal{O}}$ which moves with velocity v = 0.5 in the positive x direction relative to \mathcal{O} and whose origin $\bar{x} = \bar{t} = 0$ coincides with that of \mathcal{O} .
- (d) The locus of events whose interval Δs^2 from origin is $-1m^2$.
- (e) The locus of events whose interval Δs^2 from origin is $+1m^2$.
- (f) The calibration ticks at one meter intervals along the \bar{x} and \bar{t} axes.
- 3. (Schutz 2.1) Given the numbers $\{A^0 = 5, A^1 = 0, A^2 = -1, A^3 = -6\}, \{B_0 = 0, B_1 = -2, B_2 = 4, B_3 = 0\}$, $\{C_{00} = 1, C_{01} = 0, C_{03} = 3, C_{30} = -1, C_{10} = 6, C_{11} = -2, C_{12} = -2, C_{13} = 0, C_{21} = 5, C_{22} = 2, C_{23} = -1, C_{10} = -1, C_{10} = -1, C_{10} = -2, C_{12} = -2, C_{13} = -2, C_{13}$ $-2, C_{20} = 4, C_{32} = -1, C_{32} = -3, C_{33} = 0$, find:
 - (a) $A^{\alpha}B_{\alpha}$

$$A^{\alpha}B_{\alpha} = 5 * 0 + 0 * -2 + -1 * 4 + 6 * 0 = -4$$

(b) $A^{\alpha}C_{\alpha\beta}$ for all β Solution: for $\beta = 0$

$$A^{\alpha}C_{\alpha 0} = A^{0}C_{00} + A^{1}C_{10} + A^{2}C_{20} + A^{3}C_{30}$$

= 5 * 1 + 0 * 5 + -1 * 4 - 6 * -1 = 7

Similarly

$$A^{\alpha}C_{\alpha 1} = 0 + 0 + -5 + 6 = 1$$
$$A^{\alpha}C_{\alpha 2} = 10 + 0 + -2 + 18 = 26$$
$$A^{\alpha}C_{\alpha 3} = 15 + 0 + 3 + 0 = 18$$

(c) $A^{\gamma}C_{\gamma\sigma}$ for all σ Solution:

> This is same as the previous one because the dummy index is the only one different.

- (d) $A^{\nu}C_{\mu\nu}$ for all μ Solution:
- (e) $A^{\alpha}B_{\beta}$ for all α, β
- (f) $A^i B_i$
- (g) $A^j B_k$ for all j, k
- 4. (Schutz 2.14) The following matrix gives a Lorents transformation from \mathcal{O} to \mathcal{O} :

$$\begin{bmatrix} 1.25 & 0 & 0 & 0.75 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0.75 & 0 & 0 & 1.25 \end{bmatrix}$$

Solution:

- (a) What is the velocity of $\overline{\mathcal{O}}$ relative to \mathcal{O} ?
- (b) What is the inverse matrix to the given one?
- (c) Find the components in \mathcal{O} of a vector $\mathbf{A} \to (1, 2, 0, 0)$.

5. (Schutz 2.22)

- (a) Find the energy, rest mass and three-veloity v of a particle whose four momentus has the components (0, 1, 1, 0)kg.
- (b) The collision of two particles of four-momentum

$$\boldsymbol{p}_1 \xrightarrow{\mathcal{O}} (3, -1, 0, 0) kg, \qquad \boldsymbol{p}_2 \xrightarrow{\mathcal{O}} (2, 1, 1, 0) kg$$

results in the destruction fo the two particle and the production fo three new ones, two of which have four-mementa

$$p_3 \xrightarrow{\sim} (1,1,0,0)kg, \qquad p_4 \xrightarrow{\sim} (1,-1/2,0,0)kg$$

Find the four-meomentum, energy, rest mass and three velocity of the third particle produced. Find the CM frame's three-velocity.

- 6. (Schutz 2.30) The four-velocity of a rocket ship is $U \xrightarrow{\mathcal{O}} (2, 1, 1, 1)$. It encounters a high-velocity cosmic ray whose mementum is $P \xrightarrow{\mathcal{O}} (300, 299, 0, 0) \times 10^{-27} kg$. Compute the energy of the cosmic ray as measured by the rocket ship's passengers, using each of the two following methods.
 - (a) Find the Lorentz transformation from \mathcal{O} to the MCRF of the rocket ship, and use it to tranform the componetns of \boldsymbol{P} .
 - (b) Use eq 2.35
 - (c) Which method is quicker? Why?