PHYS 576: Particle Physics

Homework #4

Prakash Gautam

March 13, 2019

1. **(Griffith 7.4)** Show that $u^{(1)} u^{(2)}$ are *orthogonal*, in a sense that $u^{(1)\dagger} u^{(2)} = 0$. Likewise, show that $u^{(3)}$ and $u^{(4)}$ are orthogonal. Are $u^{(1)}$ and $u^{(3)}$ orthogonal?

Solution:

The bispinors $u^{(1)}$ and $u^{(2)}$ are

$$
u^{(1)}=\begin{pmatrix}1\\0\\\frac{p_z}{E+m}\\\frac{p_x-ip_y}{E+m}\end{pmatrix}\qquad u^{(2)}=\begin{pmatrix}0\\\1\\ \frac{p_x-ip_y}{E+m}\\\frac{-\frac{p_z}{E+m}}{\frac{p_z}{E+m}}\end{pmatrix}
$$

Checking for orthogonality with $u^{(1)\dagger}u^{(2)}$ we get

$$
u^{(1)\dagger}u^{(2)} = \begin{pmatrix} 1 & 0 & \frac{p_z}{E+m} & \frac{p_x-ip_y}{E+m} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ \frac{p_x-ip_y}{E+m} \\ -\frac{p_z}{E+m} \end{pmatrix}
$$

= 0 + 0 + $\frac{p_z(p_x-ip_y)}{(E+m)^2}$ - $\frac{p_z(p_x-ip_y)}{(E+m)^2}$
= 0

Since the product $u^{(1)}u^{(2)} = 0$ the two bispinors are orthogonal. Similarly the bispinors $u^{(3)}$ and $u^{(4)}$ are

$$
u^{(3)} = \begin{pmatrix} \frac{p_x + ip_y}{E + m} \\ -\frac{p_z}{E + m} \\ 0 \\ 1 \end{pmatrix} \qquad u^{(4)} = -\begin{pmatrix} \frac{p_z}{E + m} \\ \frac{p_x + ip_y}{E + m} \\ 1 \\ 0 \end{pmatrix}
$$

Checking for orthogonality with $u^{(3) \dagger} u^{(4)}$ we get

$$
u^{(3)\dagger}u^{(4)} = -\begin{pmatrix} \frac{p_x + ip_y}{E+m} & -\frac{p_z}{E+m} & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{p_z}{E+m} \\ \frac{p_x + ip_y}{E+m} \\ 1 \\ 0 \end{pmatrix}
$$

$$
= \frac{p_z(p_x + ip_y)}{(E+m)^2} - \frac{p_z(p_x + ip_y)}{(E+m)^2} + 0 + 0
$$

$$
= 0
$$

Since the product $u^{(3) \dagger} u^{(4)} = 0$ the two bispinors are orthogonal.

Now checking for the orthogonality of $u^{(1)}$ and $u^{(3)}$ we get

$$
u^{(1)\dagger}u^{(3)} = \begin{pmatrix} 1 & 0 & \frac{p_z}{E+m} & \frac{p_x - ip_y}{E+m} \\ 0 & \frac{p_z}{E+m} & 0 \end{pmatrix} \begin{pmatrix} \frac{p_z - ip_y}{E+m} \\ -\frac{p_z}{E+m} \\ 0 \end{pmatrix}
$$

$$
= \frac{p_x - ip_y}{E+m} + 0 + 0 + \frac{p_x - ip_y}{E+m}
$$

$$
= \frac{2p_x}{E+m}
$$

Since the product $u^{(1)\dagger}u^{(3)} \neq 0$ the two bispinors are not orthogonal.

2. **(Griffith 7.17)**

(a) Express $\gamma^{\mu}\gamma^{\nu}$ as a linear combination of $1, \gamma^5, \gamma^{\mu}, \gamma^{\mu}\gamma^5$ and $\sigma^{\mu\nu}$. **Solution:**

The quantity $\sigma^{\mu\nu}$ is defined s

$$
\sigma^{\mu\nu} = \frac{i}{2} \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu} \right) \tag{1}
$$

Also we know from the anti-commutation relation of the gamma matrices by definition

$$
\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}
$$

\n
$$
\implies \gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\nu} = 2g^{\mu\nu}
$$
\n(2)

Adding (1) and (2) we get

$$
2\gamma^{\mu}\gamma^{\nu} = 2(g^{\mu\nu} - i\sigma^{\mu\nu})
$$

$$
\gamma^{\mu}\gamma^{\nu} = g^{\mu\nu} - i\sigma^{\mu\nu}
$$

Here $g^{\mu\nu}$ is the Mankowski metric and is completely composed of numbers 1, -1 and 0. So this is the required expression. $\hfill\Box$

(b) Construct the matrices σ^{12} , σ and σ^{23} and relate them to Σ^1 , Σ^2 , and Σ^3 . **Solution:**

By definition

$$
\sigma^{\mu\nu} = \frac{i}{2} \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu} \right) \qquad \sigma^{12} = \frac{i}{2} \left(\gamma^{1} \gamma^{2} - \gamma^{2} \gamma^{1} \right)
$$
 (3)

$$
\begin{aligned}\n[\gamma^1, \gamma^2] &= \gamma^1 \gamma^2 - \gamma^2 \gamma^1 \\
&= \begin{pmatrix} 0 & \sigma_1 \\ -\sigma_1 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_2 \\ -\sigma_2 & 0 \end{pmatrix} - \begin{pmatrix} 0 & \sigma_2 \\ -\sigma_2 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_1 \\ -\sigma_1 & 0 \end{pmatrix} \\
&= \begin{pmatrix} -\sigma_1 \sigma_2 & 0 \\ 0 & -\sigma_1 \sigma_2 \end{pmatrix} - \begin{pmatrix} -\sigma_2 \sigma_1 & 0 \\ 0 & -\sigma_2 \sigma_1 \end{pmatrix} \\
&= \begin{pmatrix} [\sigma_2, \sigma_1] & 0 \\ 0 & [\sigma_2, \sigma_1] \end{pmatrix} = \begin{pmatrix} -2i\sigma_3 & 0 \\ 0 & -2i\sigma_3 \end{pmatrix}\n\end{aligned}
$$

Thus

$$
\sigma^{12} = \frac{i}{2} [\gamma^1, \gamma^2] = \begin{pmatrix} \sigma_3 & 0 \\ 0 & \sigma_3 \end{pmatrix} = \Sigma^3
$$

Similarly

$$
\sigma^{13} = \frac{i}{2} \left(\gamma^1 \gamma^3 - \gamma^3 \gamma^1 \right)
$$

$$
[\gamma^1, \gamma^3] = \gamma^1 \gamma^3 - \gamma^3 \gamma^1
$$

= $\begin{pmatrix} 0 & \sigma_1 \\ -\sigma_1 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{pmatrix} - \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_1 \\ -\sigma_1 & 0 \end{pmatrix}$
= $\begin{pmatrix} -\sigma_1 \sigma_3 & 0 \\ 0 & -\sigma_1 \sigma_3 \end{pmatrix} - \begin{pmatrix} -\sigma_3 \sigma_1 & 0 \\ 0 & -\sigma_3 \sigma_1 \end{pmatrix}$
= $\begin{pmatrix} [\sigma_3, \sigma_1] & 0 \\ 0 & [\sigma_3, \sigma_1] \end{pmatrix} = \begin{pmatrix} 2i\sigma_2 & 0 \\ 0 & 2i\sigma_2 \end{pmatrix}$

Thus

$$
\sigma^{13} = \frac{i}{2} \left[\gamma^1, \gamma^3 \right] = -\begin{pmatrix} \sigma_2 & 0 \\ 0 & \sigma_2 \end{pmatrix} = -\Sigma^2
$$

Similarly

$$
\sigma^{23} = \frac{i}{2} \left(\gamma^2 \gamma^3 - \gamma^3 \gamma^2 \right)
$$

$$
[\gamma^2, \gamma^3] = \gamma^2 \gamma^3 - \gamma^3 \gamma^2
$$

= $\begin{pmatrix} 0 & \sigma_2 \\ -\sigma_2 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{pmatrix} - \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_2 \\ -\sigma_2 & 0 \end{pmatrix}$
= $\begin{pmatrix} -\sigma_2 \sigma_3 & 0 \\ 0 & -\sigma_2 \sigma_3 \end{pmatrix} - \begin{pmatrix} -\sigma_3 \sigma_2 & 0 \\ 0 & -\sigma_3 \sigma_2 \end{pmatrix}$
= $\begin{pmatrix} [\sigma_3, \sigma_2] & 0 \\ 0 & [\sigma_3, \sigma_2] \end{pmatrix} = \begin{pmatrix} -2i\sigma_2 & 0 \\ 0 & -2i\sigma_2 \end{pmatrix}$

Thus

$$
\sigma^{23} = \frac{i}{2} [\gamma^2, \gamma^3] = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_1 \end{pmatrix} = \Sigma^1
$$

Here the commutation relation for the Pauli matrices $[\sigma_i, \sigma_j] = \varepsilon_{ijk} 2i\sigma_k$ has been used. This gives us the required relationship. $\hfill \square$

3. **(Griffith 11.4)** As it stands Dirac Lagrangian treats ψ and $\bar{\psi}$ asymmetrically. Some people prefer to deal with them on an equal footing, using the modified Lagrangian

$$
\mathcal{L} = \frac{i\hbar c}{2} \left[\bar{\psi} \gamma^{\mu} (\partial_{\mu} \psi) - (\partial_{\mu} \bar{\psi}) \gamma^{\mu} \psi \right] - (mc^2) \bar{\psi} \psi
$$

Apply the Euler-Lagrange equations to this \mathcal{L} , and show that you get the Dirac equations and its adjoint. **Solution:**

The Euler Lagrange equation is for the Lagrangian density $\mathcal{L}(\partial_{\mu}\phi_1, \partial_{\mu}\phi_2, ..., \phi_1, \phi_2, ...)$ is

$$
\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu} \phi_i)} \right) = \frac{\partial \mathcal{L}}{\partial \phi_i}
$$

For this modified Lagrangian we get

$$
\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \bar{\psi})} \right) = \frac{\partial \mathcal{L}}{\partial \bar{\psi}}
$$

\n
$$
\partial_{\mu} \left(\frac{i\hbar c}{2} \left[-\gamma^{\mu} \psi \right] \right) = \frac{i\hbar c}{2} \left[\gamma^{\mu} \partial_{\mu} \psi \right] - mc^{2} \psi
$$

\n
$$
\frac{i\hbar c}{2} \left[-\gamma^{\mu} \partial_{\mu} \psi \right] = \frac{i\hbar c}{2} \left[\gamma^{\mu} \partial_{\mu} \psi \right] - mc^{2} \psi
$$

\n
$$
i\hbar \left(\gamma^{\mu} \partial_{\mu} \psi \right) - mc\psi = 0
$$
\n(4)

Similarly we get the other one with $\bar{\psi}$

$$
\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \right) = \frac{\partial \mathcal{L}}{\partial \psi}
$$
\n
$$
\partial_{\mu} \left(\frac{i\hbar c}{2} \left[\bar{\psi} \gamma^{\mu} \right] \right) = \frac{i\hbar c}{2} \left[-\partial_{\mu} \bar{\psi} \gamma^{\mu} \right] - mc^{2} \bar{\psi}
$$
\n
$$
\frac{i\hbar c}{2} \left[\partial_{\mu} \bar{\psi} \gamma^{\mu} \right] = \frac{i\hbar c}{2} \left[-\partial_{\mu} \bar{\psi} \gamma^{\mu} \right] - mc^{2} \bar{\psi}
$$
\n
$$
i\hbar \left(\partial_{\mu} \bar{\psi} \gamma^{\mu} \right) + mc \bar{\psi} = 0 \tag{5}
$$

We find out that (4) and (5) are the Dirac equations and its adjoint. Thus this Lagrangian also gives the same Dirac equations.

4. **(Griffith 11.20)** Construct the Lagrangian for ABC theory.

Solution:

Since the ABC model of particles are each scalar particle with spin 0, in free form, each can be described with a Klein-Gordan Lagrangian. So we can obtain the total Lagrangian with free form part of Klein-Gordan and interaction term. The free from Lagrangian is for each particle,if we assume the scalar field ϕ_A , ϕ_B and ϕ_C respectively,

$$
\begin{split} \mathcal{L}_A &= \frac{1}{2} \partial_\mu \phi_A \partial^\mu \phi_A - \frac{1}{2} m_A^2 \phi_A^2 \\ \mathcal{L}_B &= \frac{1}{2} \partial_\mu \phi_B \partial^\mu \phi_B - \frac{1}{2} m_B^2 \phi_B^2 \\ \mathcal{L}_C &= \frac{1}{2} \partial_\mu \phi_C \partial^\mu \phi_C - \frac{1}{2} m_C^2 \phi_C^2 \end{split}
$$

The interaction terms as in the model has the strength of $-ig$. So the interaction term is

$$
\mathcal{L}_{\rm int} = -ig\phi_A\phi_B\phi_C
$$

So the final Lagrangian is

$$
\begin{split} \mathcal{L}=\frac{1}{2}\partial_{\mu}\phi_{A}\partial^{\mu}\phi_{A}-\frac{1}{2}m_{A}^{2}\phi_{A}^{2}+\frac{1}{2}\partial_{\mu}\phi_{B}\partial^{\mu}\phi_{B}-\frac{1}{2}m_{B}^{2}\phi_{B}^{2}\\+\frac{1}{2}\partial_{\mu}\phi_{C}\partial^{\mu}\phi_{C}-\frac{1}{2}m_{C}^{2}\phi_{C}^{2}-ig\phi_{A}\phi_{B}\phi_{C} \end{split}
$$

This is the required Lagrangian densitu for the ABC toy model.