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1. (Griffith 7.4) Show that u™M u® are orthogonal, in a sense that uM1u(?) = 0. Likewise, show that (%)
and u® are orthogonal. Are u¥ and 4 orthogonal?

Solution:
The bispinors v") and u(® are
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Checking for orthogonality with u(MTu(?) we get
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Since the product uMtu(?) = 0 the two bispinors are orthogonal. Similarly the bispinors u(®) and u(*) are
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Checking for orthogonality with u®Tu®) we get
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Since the product u®fu(*) = 0 the two bispinors are orthogonal.



Now checking for the orthogonality of u(") and u(® we get
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Since the product uMTu(3) £ 0 the two bispinors are not orthogonal. O
2. (Griffith 7.17)
(a) Express v#4” as a linear combination of 1,7%,v*, y#45 and o#".
Solution:
The quantity o# is defined s
ot = % (" =) (1)

Also we know from the anti-commutation relation of the gamma matrices by definition
{7} = 29"
= Y+ =2¢" (2)
Adding (1) and (2) we get
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Here g"¥ is the Mankowski metric and is completely composed of numbers 1, —1 and 0. So this is the
required expression. O

Construct the matrices 0'2, 0 and 023 and relate them to X!, X2, and 3.
Solution:
By definition
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Similarly
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Here the commutation relation for the Pauli matrices [0, Uj] = €4;,2t01, has been used. This gives us
the required relationship. O

3. (Griffith 11.4) As it stands Dirac Lagrangian treats ¢ and ¢ asymmetrically. Some people prefer to deal
with them on an equal footing, using the modified Lagrangian
ihc
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Apply the Euler-Lagrange equations to this £, and show that you get the Dirac equations and its adjoint.
Solution:
The Euler Lagrange equation is for the Lagrangian density £(9,¢1,0u¢2, ..., ¢1,¢2,...) is
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For this modified Lagrangian we get
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Similarly we get the other one with 1)
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We find out that (4) and (5) are the Dirac equations and its adjoint. Thus this Lagrangian also gives the
same Dirac equations. O

. (Griffith 11.20) Construct the Lagrangian for ABC theory.

Solution:

Since the ABC model of particles are each scalar particle with spin 0, in free form, each can be described
with a Klein-Gordan Lagrangian. So we can obtain the total Lagrangian with free form part of Klein-
Gordan and interaction term. The free from Lagrangian is for each particle,if we assume the scalar field
o4, ¢p and ¢¢ respectively,
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The interaction terms as in the model has the strength of —ig. So the interaction term is
Ling = —199a9BdC

So the final Lagrangian is
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This is the required Lagrangian densitu for the ABC' toy model. O



