PHYS 576: Particle Physics

Homework #4

Prakash Gautam

March 13, 2019

1. (Griffith 7.4) Show that $u^{(1)} u^{(2)}$ are orthogonal, in a sense that $u^{(1)\dagger}u^{(2)} = 0$. Likewise, show that $u^{(3)}$ and $u^{(4)}$ are orthogonal. Are $u^{(1)}$ and $u^{(3)}$ orthogonal?

Solution:

The bispinors $u^{(1)}$ and $u^{(2)}$ are

$$u^{(1)} = \begin{pmatrix} 1\\ 0\\ \frac{p_z}{E+m}\\ \frac{p_x - ip_y}{E+m} \end{pmatrix} \qquad u^{(2)} = \begin{pmatrix} 0\\ 1\\ \frac{p_x - ip_y}{E+m}\\ -\frac{p_z}{E+m} \end{pmatrix}$$

Checking for orthogonality with $u^{(1)\dagger}u^{(2)}$ we get

$$u^{(1)\dagger}u^{(2)} = \begin{pmatrix} 1 & 0 & \frac{p_z}{E+m} & \frac{p_x - ip_y}{E+m} \end{pmatrix} \begin{pmatrix} 0\\ 1\\ \frac{p_x - ip_y}{E+m} \\ -\frac{p_z}{E+m} \end{pmatrix}$$
$$= 0 + 0 + \frac{p_z(p_x - ip_y)}{(E+m)^2} - \frac{p_z(p_x - ip_y)}{(E+m)^2}$$
$$= 0$$

Since the product $u^{(1)\dagger}u^{(2)} = 0$ the two bispinors are orthogonal. Similarly the bispinors $u^{(3)}$ and $u^{(4)}$ are

$$u^{(3)} = \begin{pmatrix} \frac{p_x + ip_y}{E+m} \\ -\frac{p_z}{E+m} \\ 0 \\ 1 \end{pmatrix} \qquad u^{(4)} = - \begin{pmatrix} \frac{p_z}{E+m} \\ \frac{p_x + ip_y}{E+m} \\ 1 \\ 0 \end{pmatrix}$$

Checking for orthogonality with $u^{(3)\dagger}u^{(4)}$ we get

$$u^{(3)\dagger}u^{(4)} = -\left(\frac{p_x + ip_y}{E+m} - \frac{p_z}{E+m} - \frac{p_z}{E+m} - \frac{p_z}{E+m}\right) \left(\begin{array}{c} \frac{p_z}{E+m} \\ \frac{p_x + ip_y}{E+m} \\ 1 \\ 0 \end{array} \right)$$
$$= \frac{p_z(p_x + ip_y)}{(E+m)^2} - \frac{p_z(p_x + ip_y)}{(E+m)^2} + 0 + 0$$
$$= 0$$

Since the product $u^{(3)\dagger}u^{(4))} = 0$ the two bispinors are orthogonal.

Now checking for the orthogonality of $u^{(1)}$ and $u^{(3)}$ we get

$$u^{(1)\dagger}u^{(3)} = \begin{pmatrix} 1 & 0 & \frac{p_z}{E+m} & \frac{p_x - ip_y}{E+m} \end{pmatrix} \begin{pmatrix} \frac{p_x - ip_y}{E+m} \\ -\frac{p_z}{E+m} \\ 0 \\ 1 \end{pmatrix}$$
$$= \frac{p_x - ip_y}{E+m} + 0 + 0 + \frac{p_x - ip_y}{E+m}$$
$$= \frac{2p_x}{E+m}$$

Since the product $u^{(1)\dagger}u^{(3)} \neq 0$ the two bispinors are not orthogonal.

2. (Griffith 7.17)

(a) Express $\gamma^{\mu}\gamma^{\nu}$ as a linear combination of $1, \gamma^5, \gamma^{\mu}, \gamma^{\mu}\gamma^5$ and $\sigma^{\mu\nu}$. Solution:

The quantity $\sigma^{\mu\nu}$ is defined s

$$\sigma^{\mu\nu} = \frac{i}{2} \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu} \right) \tag{1}$$

Also we know from the anti-commutation relation of the gamma matrices by definition

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$$
$$\implies \gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\nu} = 2g^{\mu\nu}$$
(2)

Adding (1) and (2) we get

$$2\gamma^{\mu}\gamma^{\nu} = 2(g^{\mu\nu} - i\sigma^{\mu\nu})$$
$$\gamma^{\mu}\gamma^{\nu} = g^{\mu\nu} - i\sigma^{\mu\nu}$$

Here $g^{\mu\nu}$ is the Mankowski metric and is completely composed of numbers 1, -1 and 0. So this is the required expression.

(b) Construct the matrices σ^{12}, σ and σ^{23} and relate them to Σ^1, Σ^2 , and Σ^3 . Solution:

By definition

$$\sigma^{\mu\nu} = \frac{i}{2} \left(\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu} \right) \qquad \sigma^{12} = \frac{i}{2} \left(\gamma^{1} \gamma^{2} - \gamma^{2} \gamma^{1} \right) \tag{3}$$

$$\begin{split} \left[\gamma^{1},\gamma^{2}\right] &= \gamma^{1}\gamma^{2} - \gamma^{2}\gamma^{1} \\ &= \begin{pmatrix} 0 & \sigma_{1} \\ -\sigma_{1} & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_{2} \\ -\sigma_{2} & 0 \end{pmatrix} - \begin{pmatrix} 0 & \sigma_{2} \\ -\sigma_{2} & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_{1} \\ -\sigma_{1} & 0 \end{pmatrix} \\ &= \begin{pmatrix} -\sigma_{1}\sigma_{2} & 0 \\ 0 & -\sigma_{1}\sigma_{2} \end{pmatrix} - \begin{pmatrix} -\sigma_{2}\sigma_{1} & 0 \\ 0 & -\sigma_{2}\sigma_{1} \end{pmatrix} \\ &= \begin{pmatrix} [\sigma_{2},\sigma_{1}] & 0 \\ 0 & [\sigma_{2},\sigma_{1}] \end{pmatrix} = \begin{pmatrix} -2i\sigma_{3} & 0 \\ 0 & -2i\sigma_{3} \end{pmatrix} \end{split}$$

Thus

$$\sigma^{12} = \frac{i}{2} \begin{bmatrix} \gamma^1, \gamma^2 \end{bmatrix} = \begin{pmatrix} \sigma_3 & 0\\ 0 & \sigma_3 \end{pmatrix} = \Sigma^3$$

Similarly

$$\sigma^{13} = \frac{i}{2} \left(\gamma^1 \gamma^3 - \gamma^3 \gamma^1 \right)$$

$$\begin{split} \left[\gamma^1, \gamma^3\right] &= \gamma^1 \gamma^3 - \gamma^3 \gamma^1 \\ &= \begin{pmatrix} 0 & \sigma_1 \\ -\sigma_1 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{pmatrix} - \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_1 \\ -\sigma_1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} -\sigma_1 \sigma_3 & 0 \\ 0 & -\sigma_1 \sigma_3 \end{pmatrix} - \begin{pmatrix} -\sigma_3 \sigma_1 & 0 \\ 0 & -\sigma_3 \sigma_1 \end{pmatrix} \\ &= \begin{pmatrix} [\sigma_3, \sigma_1] & 0 \\ 0 & [\sigma_3, \sigma_1] \end{pmatrix} = \begin{pmatrix} 2i\sigma_2 & 0 \\ 0 & 2i\sigma_2 \end{pmatrix} \end{split}$$

Thus

$$\sigma^{13} = \frac{i}{2} \left[\gamma^1, \gamma^3 \right] = - \begin{pmatrix} \sigma_2 & 0\\ 0 & \sigma_2 \end{pmatrix} = -\Sigma^2$$

Similarly

$$\sigma^{23} = \frac{i}{2} \left(\gamma^2 \gamma^3 - \gamma^3 \gamma^2 \right)$$

$$\begin{split} \left[\gamma^2, \gamma^3\right] &= \gamma^2 \gamma^3 - \gamma^3 \gamma^2 \\ &= \begin{pmatrix} 0 & \sigma_2 \\ -\sigma_2 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{pmatrix} - \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma_2 \\ -\sigma_2 & 0 \end{pmatrix} \\ &= \begin{pmatrix} -\sigma_2 \sigma_3 & 0 \\ 0 & -\sigma_2 \sigma_3 \end{pmatrix} - \begin{pmatrix} -\sigma_3 \sigma_2 & 0 \\ 0 & -\sigma_3 \sigma_2 \end{pmatrix} \\ &= \begin{pmatrix} \left[\sigma_3, \sigma_2\right] & 0 \\ 0 & \left[\sigma_3, \sigma_2\right] \end{pmatrix} = \begin{pmatrix} -2i\sigma_2 & 0 \\ 0 & -2i\sigma_2 \end{pmatrix} \end{split}$$

Thus

$$\sigma^{23} = \frac{i}{2} \begin{bmatrix} \gamma^2, \gamma^3 \end{bmatrix} = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_1 \end{pmatrix} = \Sigma^1$$

Here the commutation relation for the Pauli matrices $[\sigma_i, \sigma_j] = \varepsilon_{ijk} 2i\sigma_k$ has been used. This gives us the required relationship.

3. (Griffith 11.4) As it stands Dirac Lagrangian treats ψ and $\bar{\psi}$ asymmetrically. Some people prefer to deal with them on an equal footing, using the modified Lagrangian

$$\mathcal{L} = \frac{i\hbar c}{2} \left[\bar{\psi}\gamma^{\mu} (\partial_{\mu}\psi) - (\partial_{\mu}\bar{\psi})\gamma^{\mu}\psi \right] - (mc^2)\bar{\psi}\psi$$

Apply the Euler-Lagrange equations to this \mathcal{L} , and show that you get the Dirac equations and its adjoint. Solution:

The Euler Lagrange equation is for the Lagrangian density $\mathcal{L}(\partial_{\mu}\phi_1, \partial_{\mu}\phi_2, ..., \phi_1, \phi_2, ...)$ is

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_i)} \right) = \frac{\partial \mathcal{L}}{\partial \phi_i}$$

For this modified Lagrangian we get

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \bar{\psi})} \right) = \frac{\partial \mathcal{L}}{\partial \bar{\psi}}$$

$$\partial_{\mu} \left(\frac{i\hbar c}{2} \left[-\gamma^{\mu} \psi \right] \right) = \frac{i\hbar c}{2} \left[\gamma^{\mu} \partial_{\mu} \psi \right] - mc^{2} \psi$$

$$\frac{i\hbar c}{2} \left[-\gamma^{\mu} \partial_{\mu} \psi \right] = \frac{i\hbar c}{2} \left[\gamma^{\mu} \partial_{\mu} \psi \right] - mc^{2} \psi$$

$$i\hbar (\gamma^{\mu} \partial_{\mu} \psi) - mc \psi = 0$$
(4)

Similarly we get the other one with $\bar{\psi}$

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} \right) = \frac{\partial \mathcal{L}}{\partial \psi}$$

$$\partial_{\mu} \left(\frac{i\hbar c}{2} \left[\bar{\psi} \gamma^{\mu} \right] \right) = \frac{i\hbar c}{2} \left[-\partial_{\mu} \bar{\psi} \gamma^{\mu} \right] - mc^{2} \bar{\psi}$$

$$\frac{i\hbar c}{2} \left[\partial_{\mu} \bar{\psi} \gamma^{\mu} \right] = \frac{i\hbar c}{2} \left[-\partial_{\mu} \bar{\psi} \gamma^{\mu} \right] - mc^{2} \bar{\psi}$$

$$i\hbar \left(\partial_{\mu} \bar{\psi} \gamma^{\mu} \right) + mc \bar{\psi} = 0$$
(5)

We find out that (4) and (5) are the Dirac equations and its adjoint. Thus this Lagrangian also gives the same Dirac equations.

4. (Griffith 11.20) Construct the Lagrangian for ABC theory.

Solution:

Since the ABC model of particles are each scalar particle with spin 0, in free form, each can be described with a Klein-Gordan Lagrangian. So we can obtain the total Lagrangian with free form part of Klein-Gordan and interaction term. The free from Lagrangian is for each particle, if we assume the scalar field ϕ_A, ϕ_B and ϕ_C respectively,

$$\mathcal{L}_A = \frac{1}{2} \partial_\mu \phi_A \partial^\mu \phi_A - \frac{1}{2} m_A^2 \phi_A^2$$
$$\mathcal{L}_B = \frac{1}{2} \partial_\mu \phi_B \partial^\mu \phi_B - \frac{1}{2} m_B^2 \phi_B^2$$
$$\mathcal{L}_C = \frac{1}{2} \partial_\mu \phi_C \partial^\mu \phi_C - \frac{1}{2} m_C^2 \phi_C^2$$

The interaction terms as in the model has the strength of -ig. So the interaction term is

$$\mathcal{L}_{\rm int} = -ig\phi_A\phi_B\phi_C$$

So the final Lagrangian is

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_A \partial^{\mu} \phi_A - \frac{1}{2} m_A^2 \phi_A^2 + \frac{1}{2} \partial_{\mu} \phi_B \partial^{\mu} \phi_B - \frac{1}{2} m_B^2 \phi_B^2 + \frac{1}{2} \partial_{\mu} \phi_C \partial^{\mu} \phi_C - \frac{1}{2} m_C^2 \phi_C^2 - ig \phi_A \phi_B \phi_C$$

This is the required Lagrangian densitu for the ABC toy model.