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1. (Griffith 7.4) Show that u(1) u(2) are orthogonal, in a sense that u(1)†u(2) = 0. Likewise, show that u(3)
and u(4) are orthogonal. Are u(1) and u(3) orthogonal?
Solution:
The bispinors u(1) and u(2) are

u(1) =


1
0
pz

E+m
px−ipy

E+m

 u(2) =


0
1

px−ipy

E+m

− pz

E+m


Checking for orthogonality with u(1)†u(2) we get

u(1)†u(2) =
(
1 0 pz

E+m
px−ipy

E+m

)
0
1

px−ipy

E+m

− pz

E+m


= 0 + 0 +

pz(px − ipy)

(E +m)
2 − pz(px − ipy)

(E +m)
2

= 0

Since the product u(1)†u(2) = 0 the two bispinors are orthogonal. Similarly the bispinors u(3) and u(4) are

u(3) =


px+ipy

E+m

− pz

E+m

0
1

 u(4) = −


pz

E+m
px+ipy

E+m

1
0


Checking for orthogonality with u(3)†u(4) we get

u(3)†u(4) = −
(

px+ipy

E+m − pz

E+m 0 1
)

pz

E+m
px+ipy

E+m

1
0


=
pz(px + ipy)

(E +m)
2 − pz(px + ipy)

(E +m)
2 + 0 + 0

= 0

Since the product u(3)†u(4)) = 0 the two bispinors are orthogonal.
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Now checking for the orthogonality of u(1) and u(3) we get

u(1)†u(3) =
(
1 0 pz

E+m
px−ipy

E+m

)
px−ipy

E+m

− pz

E+m

0
1


=
px − ipy
E +m

+ 0 + 0 +
px − ipy
E +m

=
2px

E +m

Since the product u(1)†u(3)) 6= 0 the two bispinors are not orthogonal. �

2. (Griffith 7.17)
(a) Express γµγν as a linear combination of 1, γ5, γµ, γµγ5 and σµν .

Solution:
The quantity σµν is defined s

σµν =
i

2
(γµγν − γνγµ) (1)

Also we know from the anti-commutation relation of the gamma matrices by definition

{γµ, γν} = 2gµν

=⇒ γµγν + γνγν = 2gµν (2)

Adding (1) and (2) we get

2γµγν = 2(gµν − iσµν)

γµγν = gµν − iσµν

Here gµν is the Mankowski metric and is completely composed of numbers 1,−1 and 0. So this is the
required expression. �

(b) Construct the matrices σ12, σ and σ23 and relate them to Σ1,Σ2, and Σ3.
Solution:
By definition

σµν =
i

2
(γµγν − γνγµ) σ12 =

i

2

(
γ1γ2 − γ2γ1

)
(3)

[
γ1, γ2

]
= γ1γ2 − γ2γ1

=

(
0 σ1

−σ1 0

)(
0 σ2

−σ2 0

)
−
(

0 σ2
−σ2 0

)(
0 σ1

−σ1 0

)
=

(
−σ1σ2 0

0 −σ1σ2

)
−

(
−σ2σ1 0

0 −σ2σ1

)
=

(
[σ2, σ1] 0

0 [σ2, σ1]

)
=

(
−2iσ3 0

0 −2iσ3

)
Thus

σ12 =
i

2

[
γ1, γ2

]
=

(
σ3 0
0 σ3

)
= Σ3
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Similarly

σ13 =
i

2

(
γ1γ3 − γ3γ1

)
[
γ1, γ3

]
= γ1γ3 − γ3γ1

=

(
0 σ1

−σ1 0

)(
0 σ3

−σ3 0

)
−
(

0 σ3
−σ3 0

)(
0 σ1

−σ1 0

)
=

(
−σ1σ3 0

0 −σ1σ3

)
−

(
−σ3σ1 0

0 −σ3σ1

)
=

(
[σ3, σ1] 0

0 [σ3, σ1]

)
=

(
2iσ2 0
0 2iσ2

)
Thus

σ13 =
i

2

[
γ1, γ3

]
= −

(
σ2 0
0 σ2

)
= −Σ2

Similarly

σ23 =
i

2

(
γ2γ3 − γ3γ2

)
[
γ2, γ3

]
= γ2γ3 − γ3γ2

=

(
0 σ2

−σ2 0

)(
0 σ3

−σ3 0

)
−
(

0 σ3
−σ3 0

)(
0 σ2

−σ2 0

)
=

(
−σ2σ3 0

0 −σ2σ3

)
−

(
−σ3σ2 0

0 −σ3σ2

)
=

(
[σ3, σ2] 0

0 [σ3, σ2]

)
=

(
−2iσ2 0

0 −2iσ2

)
Thus

σ23 =
i

2

[
γ2, γ3

]
=

(
σ1 0
0 σ1

)
= Σ1

Here the commutation relation for the Pauli matrices [σi, σj ] = εijk2iσk has been used. This gives us
the required relationship. �

3. (Griffith 11.4) As it stands Dirac Lagrangian treats ψ and ψ̄ asymmetrically. Some people prefer to deal
with them on an equal footing, using the modified Lagrangian

L =
i~c
2

[
ψ̄γµ(∂µψ)− (∂µψ̄)γ

µψ
]
− (mc2)ψ̄ψ

Apply the Euler-Lagrange equations to this L, and show that you get the Dirac equations and its adjoint.
Solution:
The Euler Lagrange equation is for the Lagrangian density L(∂µφ1, ∂µφ2, ..., φ1, φ2, . . .) is

∂µ

(
∂L

∂(∂µφi)

)
=
∂L
∂φi
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For this modified Lagrangian we get

∂µ

(
∂L

∂(∂µψ̄)

)
=
∂L
∂ψ̄

∂µ

(
i~c
2

[−γµψ]
)

=
i~c
2

[γµ∂µψ]−mc2ψ

i~c
2

[−γµ∂µψ] =
i~c
2

[γµ∂µψ]−mc2ψ

i~ (γµ∂µψ)−mcψ = 0 (4)

Similarly we get the other one with ψ̄

∂µ

(
∂L

∂(∂µψ)

)
=
∂L
∂ψ

∂µ

(
i~c
2

[
ψ̄γµ

])
=
i~c
2

[
−∂µψ̄γµ

]
−mc2ψ̄

i~c
2

[
∂µψ̄γ

µ
]
=
i~c
2

[
−∂µψ̄γµ

]
−mc2ψ̄

i~
(
∂µψ̄γ

µ
)
+mcψ̄ = 0 (5)

We find out that (4) and (5) are the Dirac equations and its adjoint. Thus this Lagrangian also gives the
same Dirac equations. �

4. (Griffith 11.20) Construct the Lagrangian for ABC theory.
Solution:
Since the ABC model of particles are each scalar particle with spin 0, in free form, each can be described
with a Klein-Gordan Lagrangian. So we can obtain the total Lagrangian with free form part of Klein-
Gordan and interaction term. The free from Lagrangian is for each particle,if we assume the scalar field
φA, φB and φC respectively,

LA =
1

2
∂µφA∂

µφA − 1

2
m2

Aφ
2
A

LB =
1

2
∂µφB∂

µφB − 1

2
m2

Bφ
2
B

LC =
1

2
∂µφC∂

µφC − 1

2
m2

Cφ
2
C

The interaction terms as in the model has the strength of −ig. So the interaction term is

Lint = −igφAφBφC

So the final Lagrangian is

L =
1

2
∂µφA∂

µφA − 1

2
m2

Aφ
2
A +

1

2
∂µφB∂

µφB − 1

2
m2

Bφ
2
B

+
1

2
∂µφC∂

µφC − 1

2
m2

Cφ
2
C − igφAφBφC

This is the required Lagrangian densitu for the ABC toy model. �
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