PHYS 576: Particle Physics

Homework #2

Prakash Gautam

March 7, 2019

1. Discuss the possible decay modes of the Ω^- allowed by conservation laws, and show how weak deay is the only remaining choice.

Solution:

There are three decay odes of Ω^- . They are

$$\begin{array}{ccc} \Omega^{-} & \to \Xi^{0} & + \begin{array}{c} \pi^{-} \\ \mathrm{sss} & \to \mathrm{uss} \end{array} & + \begin{array}{c} \pi^{-} \\ \mathrm{\bar{u}d} \end{array} \\ \begin{array}{c} \Omega^{-} \\ \mathrm{sss} & \to \mathrm{uds} \end{array} & + \begin{array}{c} K^{-} \\ \mathrm{\bar{u}s} \end{array} \\ \begin{array}{c} \Omega^{-} \\ \mathrm{sss} & \to \frac{\Xi^{-}}{\mathrm{dss}} & + \begin{array}{c} \pi^{0} \\ \mathrm{u\bar{u}} \end{array} \end{array}$$

All of these processes violate the strangeness conservation. So they can't proceed via strong interaction, so weak interaction is the only choice. \Box

2. Determine which isospin states the following combination of particles can exist in

(a)
$$\pi^0 \pi^- \pi^0$$

Solution:

Using the clebsh Gordan coefficients to write the state composition we get.

$$\begin{split} \left| \pi^{+} \pi^{-} \pi^{0} \right\rangle &= \left| 11 \right\rangle \left| 1 - 1 \right\rangle \left| 10 \right\rangle \\ \left| 11 \right\rangle \left| 1 - 1 \right\rangle &= \frac{1}{\sqrt{6}} \left| 20 \right\rangle + \frac{1}{\sqrt{2}} \left| 10 \right\rangle + \frac{1}{\sqrt{3}} \left| 00 \right\rangle \\ \left| 20 \right\rangle \left| 10 \right\rangle &= \sqrt{\frac{3}{5}} \left| 30 \right\rangle - \sqrt{\frac{2}{5}} \left| 10 \right\rangle \\ \left| 10 \right\rangle \left| 10 \right\rangle &= \sqrt{\frac{2}{3}} \left| 20 \right\rangle - \sqrt{\frac{1}{3}} \left| 00 \right\rangle \\ \left| 00 \right\rangle \left| 10 \right\rangle &= \left| 10 \right\rangle \end{split}$$

So the possible iso spin combintaions are $I = \{0, 1, 2, 3\}$

(b)
$$\pi^0 \pi^0 \pi^0$$

$$\begin{split} \left|\pi^0\pi^-\pi^0\right\rangle &= \left|10\right\rangle \left|10\right\rangle \left|10\right\rangle \\ \left|10\right\rangle \left|10\right\rangle &= \sqrt{\frac{2}{3}}\left|20\right\rangle - \sqrt{\frac{1}{3}}\left|00\right\rangle \\ \left|10\right\rangle \left|00\right\rangle &= \left|10\right\rangle \\ \left|20\right\rangle \left|10\right\rangle &= \sqrt{\frac{3}{5}}\left|30\right\rangle - \sqrt{\frac{2}{5}}\left|10\right\rangle \end{split}$$

So the possible isospin combintaions are $I = \{1, 3\}$