
PHYS 576: Particle Physics
Homework #1

Prakash Gautam

March 7, 2019

1. (Griffith 1.2) The mass of Yukawa’s meson can be estimated as follows. When two protons in a nucleus
exchange a meson (mass m ), they must temporarily violate the conservation of energy by an amount mc2(
the rest energy of the meson). The Heisenberg uncertainty principle says that you may ’borrow’ an energy
∆E, provided you ’pay it back’ in a time ∆t given by ∆E∆t = ~

2 (where ~ = h/2π). In this case, we
need to borrow ∆E = mc2 long enough for the meson to make it from one proton to the other. It has to
cross the nucleus ( size r0), and it travels, presumably, at some substantial fraction of the peed of light, so
, roughly speaking, ∆t = r0

c . Putting all this together, we have

m =
~

2r0c

Using r0 = 1×10−13cm, calculate the mass of Yukuwa’s meson. Express your answer in MeV
c2 , and compare

the observed mass of πon.
Solution:
Given r0 = 1× 10−15m, M = 6.58× 10−22MeV s; c = 3× 108s we can substitute to find the total mass

m =
~

2r0c
=

(
~c
2r0

1

c2

)
= 98.7

MeV

c2

So the predicted mass is 98.7MeV , but the real mass of Yukuwa’s meson is 138Mev which is off by a factor
of about 1.4. �

2. (a) Members of baryon decuplet typically decay after 1 × 10−23 seconds into a lighter baryon (from the
baryon octet) and a meson (from the pseudo-scalar meson octet). Thus for example, ∆++ → p++π+.
List all decay methods of this form for the ∆−, Σ∗+ and Ξ∗−. Remember that these decays must
conserve charge and strangeness( they are strong interactions).
Solution:
The decay has to satisfy the charge conservation and strangeness conservation. The possible decay for
each of these are:

∆− → n+ π− and Σ− +K0

Σ∗+ → p+ k̄0; Σ+ + π0; Σ+ + η; π0 +Σ0; Λ + π+; K+ + Ξ0

Ξ∗− → Σ0 +K−; Ξ− + π0; Σ− + K̄0; Λ +K−; Ξ0 + π−; Ξ− + η

These are all the possible decay schemes that preserve charge and strangeness. �

(b) In any decay, there must be sufficient mass in the original particle to cover the masses of the decay
products. (There may be more than enough; the extra will be ’soaked up’ in the form of kinetic energy
int the final state.) Check each of the decay you proposed in part (2) to see which ones meet this
criterion. The others are kinematically forbidden.
Solution:
Each of these decays are two body decays of the form A → B +C, the threshold energies in each can
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be calculated with

E =
M2 −m2

B −m2
c

2MA

Using the mass value of each of these products we find that the only allowed decays are

∆− → π− + n

Σ∗+ → Σ+ + π0; Λ + π+; Σ0 + π−

Ξ∗− → Σ0 + π−; Ξ− + π0

These are the only allowed decays. �

3. (Griffith 2.5)
(a) Which decay do you think would be more likely,

Ξ− → Λ + π− or Ξ− → n+ π−

Solution:
Although the decay Ξ− → n+ π− is favored kinematically over the decay Ξ− → Λ+ π− strangeness
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Figure 1: Feynman diagram for two different decays.

conservation favors the second one. Since the two s quarks have to be conserved (strangeness conser-
vation); an extra W− is requires. This means there are two extra weak vertices. Higher number of
vertices would make the process much more less likely. �

(b) Which decay of D0(cū) meson is most likely

D0 → K− + π+ or D0 → π− + π+, or D0 → K+ + π−

Which is least likely? Draw the Feynman diagrams, explain your answer and check the experimental
data.
Solution:
The Feynman diagram for D0 → K− + π+ is �
The second decay is more favored because there is no generation cross over in the particle decay.
When there is a generation cross over in the decay process it is less favored in the decay although it
is allowed kinematically. So the most favored decay process is D0 → π− + π+.

4. (Griffith 3.13) Is pµ timelike, spacelike, or lightlike for a (real) particle of mass m ? How about a massless
particle? How about a virtual particle?
Solution:
To determine the nature of the particles we find the Lorentz scalar for each. Finding p2 = p · p = pµpµ we
get

p2 = m2c2
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Figure 2: Feynman diagram for three different decay schemes for D0.

For a real particle with mass m the quantity p2 > 0 so the particle is timelike. For a massless particle γ
the scalar p2 = 0 so this is lightlike. And for virtual particle the nature depends upon the mass as there
could be massless and massive virtual particles. �

5. (Griffith 3.16) Particle A( Energy E ) hits particle B (at rest), producing C1, C2, . . . A+B → C1 +C2 +
. . . Cn. Calculate the threshold( i.e., minimum E ) for this reaction, in terms of various particle masses.
Solution:
In the lab frame lets consider particle A with mass mA and momentum ~pA with energy E strikes a stationary
target particle B with mass mB . The four momentum of A is pµA = (E, ~pA) and the four momentum of B
is pµB = (mb, 0). The invariant Lorentz scalar in the lab frame is

p2 = (pµA + pµb )
2 = (E +mB , ~pA)

2 = E2 +m2
B + 2EmB − |~pA|2

But for particle A we have E2 − |~pA|2 = m2
A substituting this in above expression we get

p2 = m2
A +m2

B + 2EmB

Since this Lorentz scalar is invariant in any reference frame we have to have the same value for the p2

for the final products. For threshold condition the daughter particles are just created so thy do not carry
any momentum. Which implies for each particles their momentum mn = En so for each of them the four
momentum is pµn = (mn, 0). The Lorentz scalar for the final qty is

p2 = (pµ1 + pµ2 + pµn)
2 = (m1 +m2 + . . .+mn, 0)

2 = (m1 +m2 + . . .+mn)
2 − 0 = M2 (say)

where the symbols M is used to mean the total sum of masses of all daughter particles. Equating the
Lorentz scalar we get

M2 = m2
A +m2

B + 2Emb =⇒ E =
M2 −m2

A +m2
B

2mB

This gives the threshold energy in lab frame of the incoming particle. �

6. (Griffith 3.22) Particle A, at rest, decays into three or more particles: A → B + C +D + . . .

(a) Determine the maximum and minimum energies that B can have in such a decay, in terms of the
various masses.
Solution:
The mimimum energy for the outgoing particle is equal to its mass when the produced particle is
just created and has no spatial momentum and all other energy is carried away by the other outgoing
particles.

Emin = mB

The maximum energy is carried by particle B when the particle A decays in such a way that particle
B moves in one direction and all other particles move in other direction in unison. Since we would get
maximum energy when the other particles do not move relative to each other giving maximum energy,
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this implies that all other particle move as a single unit of total mass with the sum of their masses.
So we can rewrite the decy as

A → B + (C +D . . .) ≡ B +N

where the particle N is as it its a single particle with the mass equal to sum of masses of each of the
rest of daughter particles.

mN = mc +mD + . . .

This problem is now like a single particle decaying into two with equal and opposite momentum. In
the CM frame the value of Lorentz scalar p2 = M2

A

pµA = pµB + pµN ≡ (mA, 0) = (EB , ~pB) + (EN ,−~pB)

=⇒ (EN ,−~pB) = (mA, 0)− (EB , ~pB)

Squaring both sides and equating

(EN ,−~pB)
2 = (mA, 0)

2 + (EB ,−~pB)
2 − 2(mA, 0) · (EB , ~pB)

E2
N − |~pB |2 = m2

A + E2
B − |~pB |2 − 2mAEB

Since we have m2 = E2 − |~p|2 we get

m2
N = m2

A +m2
B − 2mAEB

2mAEB = m2
A +m2

B −m2
N

EB =
m2

A +m2
B − (mC +mD + . . .)2

2mA

This gives the maximum energy of the particle B. �

(b) Find the maximum and minimum electron energies in muon decay, µ− → e− + ν̄e + νµ.
Solution:
The minimum energy of the electron is the mass of electron itself (in natural units of course) so

Emin = me = 511keV

By above discussion the maximum energy is

Emax =
m2

µ +m2
e− − (mµe

+mµ̄e
)2

2mµ

Since the neutrinos have very tiny mass (almost massless) we ignore their masses sow we have

Emax ≈ 1052 − 0.5112

2× 1052
= 52.50MeV

This gives the maximum mass of the outgoing muon. �
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