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1. (a) Calculate the total gravitational potential energies of (i) a homogeneous sphere of mass M and
radius a, and (ii) a Plummer sphere of mass M and scale length a
Solution:
The potential energy is U = % Where M (r) is the mass inside of spherical shell of radius
r. For a homogenous spherical distribution of p the M (r) = %m’?’p and the additional mass
increase due to increase in the radius of mass is dm = pdmrr2dr.If we bring dm from infinity to

r then the increase in potential energy is
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The total potential energy is obtained by integrating Eq. (1) from 0 to the radius of the final

sphere a.
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But for a homogenous sphere of radius a the density is p = Using this is Eq. (2) we get
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So the gravitational potential energy of homogenous shpere of mass M and radius a is =% —. W

Given any potential function we can always calculate the density function using the poisson

equation.
o = GiM Plummer Potential (3) V2P = 471G Poi ) i 4
N = 4nGp(r) Poisson’s equation  (4)
For spherical system the Laplacian operator is V? := %2% (rQ%). Calculating g—‘f we have.
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Poisson’s equation can be used to calculate the density function as p(r) = ng .
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Eq.(5) gives the density function of the plummer model. This density function can be used to
calculate the mass of spherical volume of radius r as:
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We can use Eq.(1) to calculate the potential energy equipped with the mass function and density
function.
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So the total gravitational energy of plummer potential function is

Show that the total mass of the Plummer model is indeed M.

Solution:

Eq.(6) gives the mass cantained within the radius r for plummer sphere. The total mass of
plummer sphere is the total mass contained inside the radius of r = co. Taking limit of Eq.(6)
we get.
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This shows that the total mass of plummer model is M which appears in the potential function
given by Eq. (3). B
Verify that the Kuzmin potential
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has V2® = 0 for z # 0, and so represents a surface density distribution ¥(r) in the plane z = 0.
Solution:
Writing 72 = 22 + y? where x and y are the cartesian coordinates corresponding to the r

coordinate in cylindrical system. We get ® = —GM (2 + y* + (a + |2|)?)~'/2. In cartesian

- 2
coordinate system V= = 5
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+ 8872 + %. So each components of ths operator are.
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Since the potential is function of |z| and the derivative of |z| dosent’t exist at z = 0. We take
left hand and right hand derivative for the z component. Using |z| = +z for right and |z| = —z
for left derivative, We get.
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In each of the cases the total sum
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By use of Poisson’s equation p(r) = 1/47GV?® we conclude the mass density is zero everywhere
except (possibly?) at z=0. &

Use Gausss law to determine (7).

Solution:

The gauss law for gravitational field says fs E.-dA = 417G Mgy where S is any arbitrary closed

surface and M., is the mass inside that surface. Now that we know that there is no mass

except at infinite plane z = 0, we are certain that the Gravitational force field is completely
od

along 2. The force field along 2 is given by E = 5, - Since the potential function is not smooth,

we have two different values for this derivative on either side of the disc.
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If we take a cylindrical gaussian surface for S with surface Area A%, The total mass inside the
cylinder is M¢,q = X x A and the flux though the surface f E-dA=FE;A+E_A. But E, is
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uniform so we can calculate F, = 8‘9% g = (Tfra% And similarly for E_ = (Tﬁa% So,
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So the surface mass density of the Kuzmin disk is 3(r) = PR RVEIIER [

What is the circular orbit speed for a particle moving in the plane of the disk?

Solution:

For this potential the total mass inside the spherical shell of radius r is simply the surface
density times the area of great circle, so M(r) = X(r)mr?. The transverse speed for a circular

orbit
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This gives the speed of particle in circular orbit for Kuzmin potential. H




3. For stars moving vertically in Galactic disk, with energy E, = ®(Ry, z) + 1/21)3, suppose the distri-
bution function is
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Find the density n(z) and give it’s value n(0). To construct self consistent model let ®(z) = 029,
show that 26 )
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Solve this for ¢(y) and hence find ®(z) and n(z). What is the value at large |z|?
Solution:

The number density is the zeroth moment of this distribution function so
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This gives the expression for n(z). Since ®(z = 0) = 0 is given. n(0) = nge™ = nge’ = ny.

The total mass density 47Gp(z) = V2®. But p(z) = mn(z) where m is the average mass. But for

motion only along z, we can write V2® = ‘227%’ Also operator dz? = zody ;. By poissons equation,
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Now solving this for ¢ as a function of y

This differential equation should give a function ¢(y) such that n(z) = nge=?W)/7” = nosech?(z/(22))
but I couldn’t find any reasonable solution

For large value of |z|

lim ngsech? = =0; lim ngsech? _ = =0
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So for large value of |z| the density is zero. B

4. A stellar system in which all particles are on radial orbits is described by the distribution function
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where £ = 1) — 1/20v%is relative energy and & and A are constants.

(a) By writing v? = v2 +v? , where v, and v; are the radial and transverse velocities, and L = rv; ,

prove that the volume element d3v = 27v.dvidv, may be written d®v = ”fri‘}iX where X = L2 .



(b) Hence show that the density is

where B is a constant and the relative potential at rq satisfies ¥ (rg) = &.
Solution:
The number density is the zeroth moment of distribution function with respect to velocity. So
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But if ro < r then £ =9(r) < & and f(&£,L) =0 then,

p(r) = / 0d3v = 0

This is a power law density with density decaying as square of the distance for a finite spherical
region in space. W



