
PHYS 522: Statistical Mechanics

Homework #4

Prakash Gautam

Dec 4, 2018

1. Derive the virial expansion of the ideal Bose gas by inverting the relation nλ3 = g3/2(z) series to express z
in terms of nλcb and the substitute it in the P/KT equation. Using this expression derive the expansion
for Cv/Nk valid at high temperature limit.
Solution:
For high temperature N0 ≪ N the relation can be written as

nλ3 = g3/2(z) = z +
z2

23/2
+

z3

33/2
+ . . .

To invert the series with usual technique we write the z as a power series in nλ3 as

z = c1(nλ
3) + c2(nλ

3)2 + c3(nλ
3)3 + . . .

substuting the value of z into the first series we get

nλ3 =
[
c1(nλ

3) + . . .
]
+

[(
c1(nλ

3) + c2(nλ
3)2

)2
23/2

]
+ . . .

Comparing the coefficients of like powers of λ3 in both sides we get

c1 = 1; c2 +
c21

2−3/2
= 0 c3 +

2c1c2
2−3/2

+
c31

3−3/2
= 0

Writing similarly we get

c1 = 1; c2 =
−1

2−3/2
c3 =

1

4
− 1

3−3/2

Now the expression lnQ becomes

PV

NkT
=

1

nλ3

(
z +

z2

2−5/2
+

z3

3−5/2
+ . . .

)
Substuting the value of z from the series in nλ3 with the various coefficeints c1, c2 . . . we get

PV

NkT
=

∞∑
l=1

al

(
λ3

v

)l−1

This is the required virial expansion of the expression. Now for the specific heat at constant volume we
have to find out ∂U

∂T , this can be simplified as

Cv

Nk
=

1

Nk

(
∂U

∂T

)
N,V

=
3

2

[
∂

∂T

(
PV

Nk

)]
v

In similar fashion for the expansion of g5/2(z) we get

Cv

Nk
=

∞∑
l=1

3

2

5− 3l

2
al

(
λ3

v

)l−1

Substuting all the coefficient we get

Cv

Nk
=

3

2

[
1 + c1

(
λ3

v

)
+ c2

(
λ3

v

)2

+ . . .

]
where teh coefficients are c1 = 0.088, c2 = 0.0065, . . . This is the expression of specific heat of bose gas
correct at high temperature. □
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2. (Pathria & Beale, 7.3) Combining equation 7.1.24 and 7.1.26, and making use of the first wo terms of
formula (D.9) in Appendix D, show that, as T approaches T , from above the parameter α(=ln z) of the
ideal bose gas assumes the form

α =
1

π

(
3ζ(3/2)

4

)2 (
T − Tc

T

)2

Solution:
We have from previous problem nλ3 = g3/2(z). But at λ = λc we have z = 1. But for z = 1

g3/2(1) = 1 +
1

23/2
+

1

33/2
+ . . . = ζ(3/2)

Substuting this in the expression for the critical temperature and taking the ratio

T

Tc
≡

(
λ

λc

)2

=

(
g3/2(z)

ζ(3/2)

)− 2
3

The expression for g3/2(z) can be expanded in termf os series the series expansion from appendix D.9 can
be used to obtain

T

Tc
=

(
ζ3/2− 2

√
πα+ . . .

ζ(3/2)

)− 2
3

Since we have α ≪ 1 we can make use of binomial expansion of the series

(1 + x)n ≈ 1 + nx; x ≪ 1

Using just the first two terms we get

T

Tc
≈ 1 + 4

√
πα

3ζ(3/2)

Now, this expression can be simplified further to get

4
√
πα = 3ζ(3/2)

(
T − Tc

Tc

)
Squaring both sides leds to

α =
1

π

(
3ζ(3/2)(T − Tc)

4T

)2

This is the required expression. □

3. Derive in detailed steps the following expression for an ideal Bose gas.

Cv

Nk
=

15g5/2(z)

4g3/2(z)
−

9g3/2(z)

4g3/2(z)

Solution:
For ideal bose gas from 7.1.7 and 7.1.8 we get

P

kT
=

1

λ3
g5/2(z)

N −N0

V
=

1

λ3
g3/2(z)

At high temperature we can assume that z ≪ 1 is very small and we can safely ignore N0. We can take
the ratio of these two quantities to get

PV

NkT
=

g5/2(z)

g3/2(z)
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Also the internal energy can be calculated as

U ≡ −
(

∂

∂β
lnQ

)
z,V

= kT 2

(
∂

∂T

(
PV

KT

))
z,v

=
3

2
kT

V

λ3
g5/2(z)

Now the expression for the specific heat is

Cv =
∂U

∂T
=

[
∂

∂T

(
3

2
T
g5/2(z)

g3/2(z)

)]
v

Now we can use the recurrance relation for the function g(z) as

z
∂

∂z
gν(z) = gν−1(z)

Also since the function g3/2(z) is proportional to cube root of the square of the temperature we get[
∂

∂T
g3/2(z)

]
v

= − 3

2T
g3/2(z)

Combining these two expressions we get

1

z

(
∂z

∂T

)
v

= − 3

2T

g3/2(z)

g1/2(z)

Now carrying out the differentiation of the expression Cv we get

Cv = Nk
3

2

g5/2(z)

g3/2(z)
+Nk

∂

∂T

(
g5/2(z)

g3/2(z)

)
∂z

∂T

Using the previous expression for ∂z
∂T and using the product rule in the differentiation we get

Cv

Nk
=

3

2

[
5

2

g5/2(z)

g3/2(z)
− 3

2

g3/2(z)

g1/2(z)

]
Simplifying the expression gives

Cv

Nk
=

15

4

g5/2(z)

g3/2(z)
− 9

4

g3/2(z)

g1/2(z)

This is the requred expression for the specific heat of bosons in high temperature limit. □

4. Prove the following for and atomic Bose gas with spin S

(a) Its density of state is given by:

g(E) = 2πV (2S + 1)

(
2m

h2

)3/2

E1/2

Solution:
If we consider atomic non-interating atomic gas with spin S, then for each momentum state, there
are 2S + 1 spin states. Then the grand partition function becomes

Q =
∏
i

Q2S+1
i

The grand potential becomes

Φ = −kT lnQ = kT (2S + 1)
∑
i

ln
(
1± e−β(ε−µ)

)
Approximating the sum with the integration we get

Φ = kT (2S + 1)

∞∫
0

ln
(
1 + e−β(ε−mu)

)
g(E)dE
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Here g(E) is the density of states which cn be simplified for uniformaly distributed particles as

g(k)dk =
4πk2(2S + 1)dk

(2π/L)3
=

(2S + 1)V K2dk

2π2

With volume V = L3 and E = h2k2

2m we get

g(E)dE =
(2S + 1)V

√
EdE

(2π)2

(
2m

ℏ2

)3/2

Using ℏ = h
2π and writing the density of states we get

g(E) = 2πV (2S + 1)
√
E

(
2m

h

)3/2

Which is the required density of states. □

(b) Then show that its Bose-Enistein temperature is given by

Tc =
h2

2πmk

[
n

2.612(2S + 1)

]2/3
Solution:
Now the total number o particles N can be obtained as

N =

∞∫
0

g(E)dE

eβ(ε−µ) + 1

Substuting the density function we get

N =

[
2πV

(
2m

h2

)3/2
] ∞∫

0

√
EdE

z−1eβE − 1

The integrand can be recocnized as the einstein function g3/2(z). so we get

N =
(2S + 1)V

λ3
g3/2(z)

For T = TC we can consider z comparable to unity, thus, we have z = 1, substuting this we get
g3/2(1) = ζ(3/2) = 2.612

nλ3

2S + 1
= ζ(3/2) = 2.612

Making this substution and recocnizing λ =
[

hs

2πmkT

]3/2
Rearrainging we get

Tc =
h22

πmk

[
n

2.612(2S + 1)

]
where we have made use of n = N

V . This gives the expression for the critical temperature of Bose
gas. □
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