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1. Derive the virial expansion of the ideal Bose gas by inverting the relation n\? = g4 /2(2) series to express z
in terms of nAcb and the substitute it in the P/KT equation. Using this expression derive the expansion
for C,,/NE valid at high temperature limit.

Solution:
For high temperature Ny < N the relation can be written as
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To invert the series with usual technique we write the z as a power series in nA3 as
z=c1(nA3) + ca(nA®)? + e3(nA3)3 + ..
substuting the value of z into the first series we get

(c1(nA?) + co (n)\3)2)2

nA\® = [er(nA?) + .. ] + 537 +...
Comparing the coefficients of like powers of A in both sides we get
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Writing similarly we get
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Now the expression In @ becomes
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Substuting the value of z from the series in nA® with the various coefficeints c1,cs ... we get
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This is the required virial expansion of the expression. Now for the specific heat at constant volume we
have to find out 2¥, this can be simplified as
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In similar fashion for the expansion of g5/,(z) we get
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where teh coefficients are ¢l = 0.088,co = 0.0065, ... This is the expression of specific heat of bose gas
correct at high temperature. (I

Substuting all the coefficient we get
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2. (Pathria & Beale, 7.3) Combining equation 7.1.24 and 7.1.26, and making use of the first wo terms of
formula (D.9) in Appendix D, show that, as T" approaches T, from above the parameter a(=ln z) of the

ideal bose gas assumes the form
oo L(3¢6/2) 2T -T2
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Solution:

We have from previous problem nA3 = g3/2(2). But at A = A\; we have z = 1. But for z = 1
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Substuting this in the expression for the critical temperature and taking the ratio
2 -2
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The expression for gs/5(2) can be expanded in termf os series the series expansion from appendix D.9 can
be used to obtain
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Since we have a < 1 we can make use of binomial expansion of the series
(1+2)" =1+ nzx; r<1

Using just the first two terms we get
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Now, this expression can be simplified further to get

A/ra = 30(3/2) (T;Tc>

c

Squaring both sides leds to
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This is the required expression. O

3. Derive in detailed steps the following expression for an ideal Bose gas.

Cy _ 15g5/2(2) _ 993/2(2)
Nk 493/2(2) 493/2(2’)

Solution:
For ideal bose gas from 7.1.7 and 7.1.8 we get
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T = §95/2(2)
N — Ny 1
v = F93/2(2)

At high temperature we can assume that z < 1 is very small and we can safely ignore Ny. We can take
the ratio of these two quantities to get
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Also the internal energy can be calculated as
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Now the expression for the specific heat is
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Now we can use the recurrance relation for the function g(z) as
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Also since the function g3/5(2) is proportional to cube root of the square of the temperature we get

Combining these two expressions we get
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Now carrying out the differentiation of the expression C, we get
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Using the previous expression for g—; and using the product rule in the differentiation we get
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Simplifying the expression gives
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This is the requred expression for the specific heat of bosons in high temperature limit. ([

4. Prove the following for and atomic Bose gas with spin S
(a) Its density of state is given by:

om 3/2
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Solution:
If we consider atomic non-interating atomic gas with spin .S, then for each momentum state, there
are 25 + 1 spin states. Then the grand partition function becomes

Q= H Q?S+1

The grand potential becomes

®=-kTlnQ=FkI(25+1)Y In (1 + e—ff(s—m)
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Approximating the sum with the integration we get
oo
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Here g(FE) is the density of states which cn be simplified for uniformaly distributed particles as

Amk*(2S + 1)dk (25 + 1)V K?dk
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With volume V = L% and E = T we get

g(E)dE =

(28 + )VVEIE [(2m\*?
o (7)

Using h = % and writing the density of states we get
om\ 32
g(BE) =2rV(2S + )WE (>
Which is the required density of states. O

(b) Then show that its Bose-Enistein temperature is given by
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2rmk {2.612(28 + 1)}

c =

Solution:
Now the total number o particles N can be obtained as
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Substuting the density function we get
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The integrand can be recocnized as the einstein function gz/(2). so we get
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For T' = T we can consider z comparable to unity, thus, we have z = 1, substuting this we get
g3/2(1) = C(3/2) = 2.612

nA3
=((3/2) =2.612
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Making this substution and recocnizing A = |51 kT]3/2 Rearrainging we get
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where we have made use of n = % This gives the expression for the critical temperature of Bose

gas. (Il



