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1. (Pathria and Beale 6.1) Show that the entropy of an ideal gas in thermal equilibrium is given by the
formula

S = k
∑
ε

[⟨nε + 1⟩ ln ⟨nε + 1⟩ − ⟨nε⟩ ln ⟨nε⟩]

in the case of bosons and by the formula

S = k
∑
ε

[−⟨1− nε⟩ ln ⟨1− nε⟩ − ⟨nε⟩ ln ⟨nε⟩]

in the case of fermions. Verify that these results are consistent with the general formula

S = −k
∑
ε

{∑
n

pε(n) ln pε(n)

}
,

where pε(n) is the probability that there are exactly n particles in the energy stare ε.
Solution:
The general form of entropy of of the system is given by

S = K
∑
i

[
n∗
i ln

(
gi
n∗
i

)
+
(
n∗
i −

gi
a

)
ln

(
1− a

nis
∗

gi

)]
where, n∗

i is the set confirming to most probable distribution among the cells. With the degeneracy factor
gi = 1, we get ni

gi
= n∗

i Also the average nε is given by

⟨nε⟩ = z

(
∂q

∂z

)
V,T

=
1

z−1e−βϵ + a
= n∗

i

Substituting n∗
i = ⟨nε⟩ we get

S = k
∑
ε

[
−⟨nε⟩ ln ⟨nε⟩+

(
⟨nε⟩ −

1

a

)
ln (1− a ⟨nε⟩)

]

Now for bosons a = −1, we get

S = k
∑
ε

[−⟨nε⟩ ln ⟨nε⟩+ (⟨nε⟩+ 1) ln (1 + ⟨nε⟩)]

Which is the required expression for the bosons. Now for fermions we substitute a = 1 and obtain To
show that the general expression

S = −k
∑
ε

{∑
n

pε(n) ln pε(n)

}
,

works for the entropy we first notice that the expression can be modified rewritten as

S = −k
∑
ε

⟨ln pε(n)⟩
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Also for bosons the probability of having exactly n particle in the state with energy ε is given by

pε(n) =
⟨nε⟩n

(⟨nε⟩+ 1)n+1
(1)

ln pε(n) = n ln ⟨nε⟩ − (1 + n)ln (⟨nε⟩+ 1) (2)

Now substituting this to the general expression of entropy the inner summ over all n becomes

S = −k
∑
ε

⟨n ln ⟨nε⟩ − (1 + n)ln (⟨nε⟩+ 1)⟩

= −k
∑
ε

⟨nε⟩ ln ⟨nε⟩ − (1 + ⟨nε⟩)ln (⟨nε⟩+ 1)

= k
∑
ε

[−⟨nε⟩ ln ⟨nε⟩+ (⟨nε⟩+ 1) ln (1 + ⟨nε⟩)]

which shows that the general expression is true for bosons.

Substituting a = 1 for fermions we get

S = k
∑
ε

[−⟨nε⟩ ln ⟨nε⟩+ (⟨nε⟩ − 1) ln (1− ⟨nε⟩)]

Which is the required expression for the fermions entropy.

The probability of faving exactly n = {0, 1} particles in the cell for fermoins is given by

pε(n) =

{
1− ⟨nε⟩ if n = 0

⟨nε⟩ if n = 1

This gives only two terms in the inner sum of the general expression so

S = −k
∑
ε

[⟨nε⟩ ln ⟨nε⟩+ (1− ⟨nε⟩ ln(1− ⟨nε⟩))]

Which shows that the general expression holds for fermions too. □

2. (Pathria and Beale 6.2) Derive for all three statistics, the relevant expressions for the quantity

⟨
n2
ε

⟩
− ⟨nε⟩2 = kT

(
∂ ⟨nε⟩
∂µ

)
T

Compare with the previous results that we showed in class,

⟨
n2

⟩
− ⟨n⟩2 = kT

(
∂ ⟨n⟩
∂µ

)
T

for a system embedded in a grand canonical ensemble.
Solution:
This problem is the find the first and second moments of nε and their difference. Once we know the
probability mass function (pmf) of the variable finding moment quite generally is

⟨f(x)⟩ =
∑
x

f(x)p(x)

where p(x) is the pmf. Now for the bosons, (3) can be slightly rewritten as

pε(n) =
⟨nε⟩n

(⟨nε⟩+ 1)n+1
=

1

⟨nε⟩+ 1

⟨nε⟩n

(⟨nε⟩+ 1)n
=

(
1− ⟨nε⟩

1 + ⟨nε⟩

)(
⟨nε⟩

⟨nε⟩+ 1

)n

(3)

With substitution ⟨nε⟩
1+⟨nε⟩ = t we get

p(n) = (1− t)tn
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Now the first moment of this pmf is

⟨n⟩ =
∞∑

n=0

n(1− t)tn = (1− t)
t

(1− t)2
=

t

1− t
∵ 1

(1− t)2
=

∞∑
n=0

ntn−1

Similarly the second moment is

⟨
n2

⟩
=

∞∑
n=0

n2(1− t)tn = (1− t)
t(1 + t)

(1− t)3
=

t(1 + t)

(1− t)2
∵

Thus the variance is ⟨
n2
ε

⟩
− ⟨nε⟩2 =

t(1 + t)

(1− t)2
− t2

(1− t)2
=

t

(1− t)2

Now substuting back the value of t we get⟨
n2
ε

⟩
− ⟨nε⟩2 = ⟨nε⟩+ ⟨nε⟩2

For the Fermions we get

⟨
n2
ε

⟩
=

1∑
n=0

n2p(n) = p(1) = ⟨nε⟩

This implies tht the variance is ⟨
n2
ε

⟩
− ⟨nε⟩2 = ⟨nε⟩ − ⟨nε⟩2

For Boltzmann particle the pmf is a poisson distribution

pε(n) =
⟨nε⟩n e−⟨nε⟩

n!

For poisson distribution is it can be easily shown that the mean and variance is just the parameter ⟨nε⟩
Thus we have ⟨

n2
ε

⟩
− ⟨nε⟩2 = ⟨nε⟩

Looking at each of these three variances we see that it is of the general from

⟨
n2
ε

⟩
− ⟨nε⟩2 = ⟨nε⟩ − a ⟨nε⟩2

Also the expectation value ⟨nε⟩ is given by

⟨nε⟩ =
1

z−1eβε + a

Differentiating this with respect to µ at constant temperature we get[
∂ ⟨nε⟩
∂µ

]
T

=
⟨nε⟩2

kT

[
1

⟨nε⟩
− a

]
Rearranging we get

KT

[
∂ ⟨nε⟩
∂µ

]
T

= −⟨nε⟩ − a ⟨nε⟩2

Now the comparision of this expression for all the statistics leads to⟨
n2
ε

⟩
− ⟨nε⟩2 = KT

[
∂ ⟨nε⟩
∂µ

]
T

This expression is true in general for all statistics. □
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3. (K. Huang 8.6) What is the equilibrium ratio of ortho- to para-hydrogen at a temperature of 300 K?
What is this ratio in the limit of high temperature? Assume that the distance between the protons in the
molecule is 0.74 Angstrom.
Solution:
The equilibrium ratio is given by

Northo

Npara
= 3

∑
n=odd(2n+ 1)e−βℏ2/2Il(l+1)∑
n=even(2n+ 1)e−βℏ2/2Il(l+1)

Evaluating this sum explicitly with series method we get For large values of n the ratio go to one because
for large n the two quantities in Numerator and denomenator are essentially the same. So we get

Northo

Npara
= 3

This gives the equilibrium ratio of ortho and para hydrogen in the temperature required. □

4. Consider the thermal properties of conducting electrons in a metal and treat electrons as non-interacting
particles, when particle density is high. Assuming each Cu atom donates an electron to the conducting
electron gas, calculate the chemical potential, or the Fermi energy, of copper, for which the mass density
is 9g

cm3 . Express your answer in Kelvin.
Solution:
The fermi energy is given by

Ef =
h2

8m

(
3N

πV

) 2
3

For Cu the density of atoms is

n = 8.5× 1028m−3

Thus we get the fermi energy equal to

Ef =
h2

8m

(
3N

πV

) 2
3

=
(6.6× 10−34)2

8× 9.1× 10−31

(
3

π
8.5× 1028

)− 2
3

= 1.1× 10−18 = 6.7eV

In kelvin this is equivalent to 6.7eV = 6.4× 104K □
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