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1. Evaluate the density matrix ϱ of an electron in a magnetic field in the representation that makes σ̂ diagonal.
Next, show that the value of ⟨σ⟩, resulting from this representation, is precisely the same as the one obtained
in class.
Solution:
The pauli spin operator σx is diagonal in the representation where the basis states are eivenstates of Sx

operator. In Sz representation the Sx states are given by

|Sx;±⟩ = 1√
2
(|+⟩ ± |−⟩)

The transformation operator that takes from Sz representation to Sx representation is given by operator

U = |Sx; +⟩⟨+|+ |Sx;−⟩⟨−|

So the matrix representation of this operator is

U =

[
⟨Sx; +|+⟩ ⟨Sx; +|−⟩
⟨Sx;−|+⟩ ⟨Sx;−|−⟩

]
=

1√
2

[
1 1
1 −1

]
The operator in the new basis can be obtained from the old basis with the transformation.

σ′
z = U†σzU =

1

2

[
1 1
−1 1

] [
1 0
0 −1

] [
1 1
1 −1

]
=

1

2

[
0 −1
−1 0

]
The Hamiltonian of the system in new basis is

H′ = µB · σ′ = −µBzσ
′
z

The density operator in cannonical ensemble is given by

ϱ̂′ =
e−βH

Tr (e−βH)
(1)

Carrying out the taylor expansion of the numerator in the density operator

e−βH′
= eβµBzσ

′
z = 1 +

βµBzσ
′
z

1!
+

(βµBzσ
′
z)

2

2!
+

(βµBzσ
′
z)

3

3!
+

(βµBzσ
′
z)

4

4!
+ . . .

=

[
1 +

(βµBz)
2

2!
+

(βµBz)
4

4!
+ . . .

]
+ σ′

z

[
βµBz

1!
+

(βµBz)
3

3!
+ . . .

]
= cosh(βµBz) + σz sinh(βµBz) (2)

where we have used the fact that σ′2n
z = 1; σ′2n+1

z = σ′
z for all n in {0, 1, . . .} Also we have

Tr(1) = 2 Tr(σ′
z) = 0
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So taking trace of Eq. (??) we get

Tr(e−βH′
) = Tr(cosh(βµBz) + σz sinh(βµBz)) = cosh(βµBz)Tr(1) + sinh(βµBz)Tr(σ

′
z) = 2 cosh(βµBz)

So the density operator (1) becomes

ϱ̂′ =
cosh(βµBz) + σz sinh(βµBz)

2 cosh(βµBz)
=

1

2
+

1

2
σ′
z tanh(βµBz)

Now the expectation value of operator σz for the

⟨σ′
z⟩ = Tr(ϱ̂σ′

z) = Tr

(
1

2
σz +

1

2
σ2
z tanh(βµBz)

)
= Tr

(
1

2
σz +

1

2
tanh(βµBz)

)
= tanh(βµBz)

This gives the expectation value of the operator. This expression is the same as the one we obtained using
the basis states where σz was diagonal instead of σx that we have here. □

2. Derive the uncertainties, ∆x,∆p and ∆E, of a free particle in 3D box using the density matrix expression
in the coordinate representation. Then calculate the uncertainty product ∆x ·∆p.
Solution:
For a particle in a box the the density matrix is given by

⟨r|ϱ̂|r′⟩ = 1

V
exp

[
− m

2βℏ2
|r − r′|2

]
The average position of the particle is given by

⟨r⟩ = Tr(rϱ̂) =
1

V

∫ ∣∣∣∣exp[− m

2βℏ2
|r − r′|2

]
r

∣∣∣∣
r=r′

d3r =
3

4
R

The average squared position is given by⟨
r2
⟩
= Tr(r2ϱ̂) =

1

V

∫ ∣∣∣∣exp[− m

2βℏ2
|r − r′|2

]
r2
∣∣∣∣
r=r′

d3r =
3

5
R2

So the uncertainity in the position of particle is given by

∆r =

√
⟨r2⟩ − ⟨r⟩2 =

1

4

√
3

5
R

Now the average value of momentum is given by

⟨p⟩ = Tr(pϱ̂) =
−iℏ
V

∫ ∣∣∣∣ ∂∂r exp
[
− m

2βℏ2
|r − r′|2

]∣∣∣∣
r=r′

d3r = −i ℏ
V

∫
0d3r = 0

The average momentum squared is⟨
p2
⟩
= Tr(p2ϱ̂) = −ℏ2

V

∫ ∣∣∣∣ ∂2∂r2 exp

[
− m

2βℏ2
|r − r′|2

]∣∣∣∣
r=r′

d3r = 3mkT

Again the uncertainity in momentum is given by

∆p =

√
⟨p2⟩ − ⟨p⟩2 =

√
3mkT

So the uncertainity product is

∆r ·∆p = 3

4

√
mkT

5
R

This gives the uncertainity product in position and momentum. □

2



3. Prove that

⟨q|e−βH|q′⟩ = exp

[
−βH

(
−iℏ ∂

∂q
, q

)]
δ(q − q′),

where

H
(
−iℏ ∂

∂q
, q

)
is the Hamiltonian of the system in the q-representation, which formally operates upon the Dirac delta
function, δ(q − q′). Write δ-function is a suitable form; apply this result to a free particle.
Solution:
let ψn(q) = ⟨n|q⟩ be energy eigenfunction with eigenvalue En in configuration space q. Then by schrodingers
equation we have

H(−iℏ ∂
∂q
, q)ψn(q

′) = Enψn(q
′)

Since we know that for operators Aψ(x) = λϕ(x) =⇒ f(A)ϕ(x) = f(λ)ϕ(x)

e−βH(−iℏ ∂
∂q ,q)ψn(q

′) = e−βEnψn(q
′)

This can be used to write

⟨q|e−βH|q′⟩ =
∑
n

⟨q|n⟩ ⟨n|e−βH|q′⟩

(
Inserting

∑
n

|n⟩⟨n|

)
=
∑
n

ψn(q)e
−βEnψ∗

n(q
′)

= eH(−iℏ ∂
∂q ,q)

∑
n

ψn(q)ψ
∗
n(q

′)

But since the the eigenfunctions of the Hamiltonian are orthogonal to each other we get
∑

n ψ
∗(q′)ψ(q) =

δ(q − q′) we get

⟨q|e−βH|q′⟩ = eH(−iℏ ∂
∂q ,q)δ(q − q′) (3)

This is the required expression for the matrix element of the dnesity operator e−βH.

We can also write the δ–function using the fourier transform representaation of δ–function as

δ(q − q′) =

(
1

2π

)3
∞∫

−∞

eik(q−q′)dk (4)

For a free particle the Hamiltonian can be written as

H(−iℏ ∂
∂q
, q) =

p2

2m
= − ℏ2

2m

∂2

∂q′2
(5)

Now using (5) and (4) this in (3) we get

⟨q|e−βH|q′⟩ =
(

1

2π

)3
∞∫

−∞

eH(−iℏ ∂
∂q ,q)eik(q−q′)dk

=

(
1

2π

)3
∞∫

−∞

e−
βℏ2

2m +ik(q−q′)dk

3



This can be solved by completing the square in the exponential and using the gamma function the final
result is

⟨q|e−βH|q′⟩ =
(

m

2πβℏ2

) 3
2

e
− m

2βℏ2 (q−q′)
2

This is the matrix element of the density operator for the free particle in a box. □

4. Derive the density matrix ρ for a free particle in the momentum representation and study its main properties,
such as the average energy, momentum.
Solution:
The Hamiltonian of the free particle in moementum representation is

H =
p̂2

2m

Let |ψk⟩ be the momentum wavefunction of the particle then the expression for the momentum wavefunction
is

k(r) =
1√
V
eik·r

Since the momentum eigenfunctions make complete set of states they are orthonormal

⟨ψk|ψ′
k⟩ = δk,k′

Now the cannonical partition function of the system is

Q(V, T ) = Tre−βH

=
∑
k

⟨ψk|e−βH|ψk⟩

=
∑
k

e−
βℏ2

2m k2

Since the states are very close in momentum sapce we can replace the sum by integral

Q(V, T ) =
V

(2π)3

∫
dKe−

βℏ2

2m k2

=
V

(2π)3

(
2mπ

βℏ2

) 3
2

=
V

λ3

The matrix element of this operator now become

⟨ψk|ϱ̂|ψ′
k⟩ =

λ3

V
e−

βℏ2

2m k2

δk,k′

Ths is the requried density matrix representation in momentum sapce. □

5. We showed in class that linearly polarized light corresponds to apure state and non-polarized light is in a
mixed state. What is the circularly polarized, a mixed state or a pure state? Verify your statement
Solution:
Polarized light must be pure state because, at any given time it only has components The two plane

polarized components x be represented by A

[
1
0

]
a and y plane polarized be represented by

[
0
1

]
. The
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most general polarization of the light can be written as the linear combination of these two plane polarized
conponents as

Pgen = a

[
1
0

]
eiθ1 +

[
0
1

]
eiθ2

where a and b in general are complex numbers. For a circularly polarize. If the two plane polarized
components have a total phase difference of nπ then the light is plane polarized. But for the phase
difference δ = θ2 − θ1 = (2n+ 1)π2 the light is circularly polarized. Let the phase θ1 = 0 and 2 = π/2 such
the phase difference is π/2 we get

Pcircular =
1√
2

[
1
0

]
+

i√
2

[
0
1

]
Now for this representation, the density matrix can be obtained easily as

ϱ̂ =

[
aa∗ ab∗

ba∗ bb∗

]
=

[
1/2 −i/2
i/2 1/2

]
This prepresents a pure state as

ϱ̂2 =

[
1/2 −i/2
i/2 1/2

]
×
[
1/2 −i/2
i/2 1/2

]
=

[
1/2 −i/2
i/2 1/2

]
= ϱ̂

This verifies that the circularly polarized light is pure state. □
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