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Homework #4
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1. Consider an N−dimensional sphere.

(a) If a point is chosen at random in an N− dimensional unit sphere, what is the probability of it falling
inside the sphere of radius 0.99999999?
Solution:
The probability of a point falling inside a volume of radius r within a sphere of radius R is given by

p =
V (r)

V (R)
(1)

where V (x) is the volume of sphere of radius x. The volume of N dimensional sphere of radius x is

V (x) =
πn/2

Γ
(
n
2 + 1

)xn

The progression of volume for different radius.
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Using this in (1) we obtain

p =
( r

R

)n
(2)

This gives the probability of a particle falling within a radius r in aNdimensional sphere of radius R. □

(b) Evaluate your answer for N = 3 and N = NA(the Avogadro Number)
Solution:
For r = 0.999999 and N = 3 and N = NA = 6.023× 1023 we get

p3 =

(
0.999999

1

)3

= 0.999997000003 pNA
=

(
0.999999

1

)6.023×1023

= 0.0000000000000
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The probability of a particle falling within the radius nearly 1 in higher two-dimensional sphere is
vanishningly small. □

(c) What do these results say about the equivalence of the definitions of entropy in terms of either of the
total phase space volume of the volume of outermost energy shell?
Solution:
Considering a phase space volume bounded by E +∆ where ∆ ≪ E. The entropy of system bounded
by the E +∆ and the outermost shell Σ(E +∆)− Σ(E),

SE = k ln

(
Σ(E +∆)

h3N

)
, S∆ = k ln

(
Σ(E +∆)− Σ(E)

h3N

)
Subtracting to see the differnce we get

SE − S∆ = k ln

(
1− Σ(E)

Σ(E +∆)

)
≤ − Σ(E)

Σ(E +∆)

But for large dimension, the ration Σ(E)
Σ(E+∆) ≪ 0. So we obtain

SE − S∆ ≊ 0 Se ≊ S∆

This shows that the entropy interms of outrmost shell volume and the entire volume are almost the
same. □

2. A harmonic oscillator has a Hamiltonian energy H related to its momentum P and its displacement q by
the equation

p2 + (Mωq)2 = 2MH

When H = U , a constant energy, sketch the path of the system in two-dimensional phase space.
Solution:
The phase space trajectory can be rearranged into

p2(√
2MH

)2 +
q2(

1
ω

√
2H
M

)2 = 1

This represents an ellipse in the phase space with semi major axis a =
√
2MH and the semi minor axis

b = 1
ω

2H
M .

Figure 1: Phase plot of the system.

The volume of this ‘volume’ in phase space for constant energy H = U is the area of ellipse which is

V = πab = π
√
2MU · 1

ω

√
2U

M
=

2πU

ω
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This gives the required phase space ‘volume’. □
What volume of phase space does it enclose? In the case of N similar oscillators, which have the total
energy U given by

N∑
j=1

p2 +
N∑
j=1

(Mωq)2 = 2MU

with additional coupling terms, too small to be included but large enough to ensure equipartition of energy,
what is the nature of the path traversed by the system point?

(a) Show that the volume of the phase space “enclosed” by this path is 1
N !

(
2πU
ω

)N
.

Solution:
Lets assume that the phase space volume of n harmonic oscillators which form a 2n dimensional
ellipsoid be Cna

nbn The coefficient can be found by usual method to be

Cn =
πn

Γ(n+ 1)

Noting that for this problem a =
√
2MU and b = 1

ω

√
2U
M . The phase space volume becomes

Σ(U) =
πn

Γ(n+ 1)

(√
2MU

)n( 1

ω

√
2U

M

)n

=
1

n!

(
2πU

ω

)n

This gives the required phase space volume. □

(b) Use the final result of (2a) to show that the entropy ofN distinguishable harmonic oscillators, according
to microcannonical ensemble is

S = Nk

[
1 + ln

(
k

ℏω

)]

Solution:
The entropy of system by definition is

S = k ln

(
Σ(U)

hn

)
= k ln

(
1

n!

(
2πU

hω

)n)
= k ln

(
1

n!

)
+ nk ln

(
U

ℏω

)
Using Sterling’s approximation for we get

ln

(
1

n!

)
= −n lnn+ n

Susbtuting this back in the entropy equation gives

S = nk − nk lnn+ nk ln

(
U

ℏω

)
= nk

[
1 + ln

(
U

nℏω

)]
But for the simpile harmonic oscillator the energy U = nkT using this gives

S = nk

[
1 + ln

(
kT

ℏω

)]
This is the require expression for the entropy of the system. □

3. Consider a system fo N particles in which the energy of each particle can assume two and only two distinct
values 0 and E(> 0). Denote by n0 and n1 the occupation numbers of energy level 0 and E, respectively.
The total energy of the system is U .
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(a) Find the entropy of such a system.
Solution:
Since there are N = n0 + n1 particles the total ways in which n0 particle can go into 0 energy level is
given by

Ω = NCn0 =
N !

n0!n1!

So the entropy of system is

S = k lnΩ = k ln

(
N !

n0!n1!

)
= k lnN !− k lnn0!− k lnn1!

For large N this can be simplified by using Sterling’s approximation as

S = k(N lnN −N + n0 − n0 lnn0 + n1 − n1 lnn1) = kN

[
ln

(
N

n0

)
+

n1

N
ln

(
n0

n1

)]
This can be rearranged to obtain

S = −k
[
n0 ln

(n0

N

)
+ n1 ln

(n1

N

)]
This is the required entropy of the system. □

(b) Find the most probable value of the n0 and n1 and find the mean square fluctuations of these quan-
tities.
Solution:
For this system, the energy constraint is

n0 · 0 + n1 · E = U

And the total number constraint is

N = n0 + n1

We have to maximize the function

S′

k
= S − α(n0 + n1 −N) + β (n0 · 0 + n1 · E − U)

Differentiating with respect to each occupation number n0 and n1 and α and β. We get

lnn1 + α = 0

lnn1 + α+ E = 0

Solving these the only possible value of n1 is

n1 =
U

E
n0 = N − n1 = N − U

E

These are the possible values of n0 and n1 the occupation numbers.
□

(c) What happens when a system of negative temperature is allowed to exchange heat with a system of
positive temperature?
Solution:
When the system of negative temperature is allowed to exchange energy with the system of positive
energy the energy flows from the system of negative temperature to the system of positive tempera-
ture. □
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4. (Huang 6.4) Using the corrected entropy formula, work out the entropy of mixing for the case of different
gases for the case of identical gases, thus showing explicitly that there is no Gibbs paradox any more.
Find also internal energy, U , and chemical potential, µ, using the corrected entropy formula and corrected
entropy formula. The latter is called ‘Sackur-Tetrode equation’.

Solution:
By using gibbs correction the phase space volume should be divided by N !

Σ(E) =
1

N !

(
V

h3

)N

C3NR3N =
1

N !

(
V

h3

)N (
2

3N

)
π3N/2

Γ
(
3N
2

) (√2ME)3N

so the entropy function really becomes

S = k ln ((E)) = −N lnN +N +Nk ln

[
V

h3
R3

]
+ k lnC3N

Since N is a very large number we can make the better approximation of the Sterling approximation

lnCn = ln

(
πn/2

Γ
(
n
2 + 1

)) ≈ n

2
ln

(
2πe

n

)

Which yields us

S = k

[
3N

2
ln

(
2πe

3N

)
+N ln

(
V

Nh3
+

3

2
N ln(2mE)

)]
= Nk

[
ln

(
4πmE

3

)3/2

+ ln

(
V

Nh3

)]
+

3Nk

2

= Nk ln

(
V

N
u3/2

)
+

3

2
Nk

[
5

3
+ ln

(
4πm

3h2

)]
This is the fundamental equation of the system shich can be always inverted to find our intensive parameters.
So the internal energy becomes

U =

(
3

4

Nℏ2

πmV

)3/2

exp

(
2S − 5

3Nk

)
□
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