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1. (Sakurai 5.1) A simple harmonic oscillator (in one dimension) is subjected to perturbation
AH; = bz,

where b is a real constant. You may assume without proof that

| h
<un’ |z|un> = % (\/TL + 15n’,n+1 + \/ﬁén/,n_l)

(a) Calculate the energy shift of the ground state to lowest nonvanishing order.
Solution:
The the energy shift in unpertrubed r** state ket |n") is given by
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The first order correction for grond state term is
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Matrix element (n|z|n') clearly vanishes for when n and n’ differ by any other quantity than one, 1.
The infinite sum gives only single non vanishing term when |n") = |1) in that case
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This is the first nonvanishing term in the energy correction. ]

(b) Solve this problem exactly and compate with your result in (1a).
Solution:
The total hamiltonian after pertubation becomes
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We can rearrange the terms by completing square for the last two terms to get
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This is again a Hamiltonian for a simple harmonic oscillator. The added quantity with x doesnot
change the behaviour of the oscillator as it is just coordinate translation, the last term is a constant



energy term. This will give energy eigenvalues exactly as we had before with with an added constant
of
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This is exactly what was found in (1a). 0

2. (Sakurai 5.2) In nondegenerate time-independent perturbation theory, what is the probability of finding
in a pertrubed energy eigenstate (|k)) the corresponding unpertrubed eigenstate (‘k(0)>)? Solve this upto
terms of order g2
Solution:

The probability of pertrubed state to be found in the unpertrubed state can be calculated by the normaliza-
tion constant that normalizes the unpertrubed state ket. Let us suppose that Z,, normalizes the pertrubed
state ket
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where |n) is the pertrubed state ket and |n), is the normalized ket. This can be found by the raltion
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Using the expansion of pertrubed kets we get
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So the probability is given by Z,, which is jus the inverse of above quantity using the binomial expansion
we get
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This expression gives the probability of finding the pertrubed ket in the original unpertrubed state ket. [

3. Consider a one dimensional infinite square well potential

where

U(z){o f0<z<L
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Now consider a perturbation by placing a delta function at the center of the well
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(a) What is the unpertrubed energy levels and wavefunctions?
Solution:
The schrodingers equation is
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Let the wave function of the system be ¥ (z) = (z|y)). Also the hamiltonian can be written with

operator p as p* = (ihV)?* = —h* 5 d so the schrodingers equation becomes
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This is a well known seond order differential equation whose solution are well knows to be
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These are the required wavefunction and energy levels for th unpertrubed system.

What is the first order correction to the energy shift?
Solution:
The first order correction in energy shift is given by
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So the first order energy correction is %, .
What is the first order correction to the ground state wavefunction?

Solution:
The correction for wave function is given by the expression
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For ground state n = 1 so the correction becomes
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The Energy difference with the ground state are
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So the pertrubed ground state wave function becomes
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This is the required pertrubed eigenstate for the gorund state of the potential.

What is the second order correctio to the energy shift specially for the ground state?
Solution:
The second order shift in energy is given by
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For the state waefunctions we have
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The Energy differences are

Substuting this back we get
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For ground state n = 1 so the energy correction for ground state becomes
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These are the required energy corrections. 0

4. Calculate the ground state wave function for Simple Harmonic Oscillator with the pertubation V =
%5mw2x2
Solution:

The ground state wave function without the perturbation for simple harmonic oscillator is
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The perturbation scales the frequency by a factor of v/1 + € sustuting this in the frequency of unpertrubed
state we get
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Since the perturbation factor € < 1 we can use the binomial expansion as

(lJrs)l/gzlJrE (1+s)1/2%1+E

8 2
Using these we get
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This is the required pertrubed energy eigenstate. O



