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1. For two spin 1
2 particles, ingornign orbital angular momentu , the singlet state is

|s = 0;m = 0⟩ = 1√
2
(|+,−⟩ − |−,+⟩)

Verify by explicitly rotatin the state about the y-axis by angle 0 so that it is rotationally invariant
Solution:
Writing the operator Sy = 1

2i (S+ − S−). The rotated state is
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So the state is really lotationally invariant under rotation on θ rotation on y − axis □

2. A system consists of three independent sybsystems with angular moementum J1, J2 and J3 respectively
such that [Jai, Jbj ] = iℏεijkJakδab where the subsystems indecies a and b are 1, 2 or 3.

(a) We know that the simultaneous eigenket for the six operators
{
J2

2,J2
2,J3

2, J1z, J2z, J3z
}
is a choice

for base ket. Now construct another coice for a base ket to describe the system which includes the
operator J = J1 + J2 + J3. Briefly explain or show how the six operators commute with each other
making it a valid base ket.
Solution:
Defining J = J1 +J2+J3, I think

{
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2 + J1
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}
works

as six operators. Since
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]
= 0, this implies
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Since each of these operators are independent of each other, these form a complete set of commuting
operators. □

(b) Write the state |j1 = 1, j2 = 1, j3 = 1, j1z = 1, j2z = 1, j3z = 1⟩ in the other representation. Then use
the ladder operator to find the Clebsch-Gordon coefficients for th enext lowered states.
Solution:
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The maximum value of j in the system with eivenvalue of J = J1 +J2 +J3 is j = m1 +m2 +m3 = 3.
We can denote the system with these eivenvaues of J2 operator and Jz operator as

|j = 3;m = 3⟩ = |j1 = 1, j2 = 1, j3 = 1, j1z = 1, j2z = 1, j3z = 1⟩

Dropping the eigenvalues of Ji operators and writing just the eigenvalues of Jkz, as there is no ambi-
guity Operating by J− operator on both sides we get

J− |j = 3;m = 3⟩ = (J1− + J2− + J3−) |j1z = 1, j2z = 1, j3z = 1⟩√
(3 + 3)(3− 3 + 1)ℏ |j = 3;m = 2⟩ =
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]
So the Clebsch-Gordon coefficients for this system are

{
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3
, 1√

3
, 1√

3

}
□

3. (Sakurai 3.24) We are to add angular momenta j1 = 1 and j2 = 1 to form j = 2, 1 and 0 states.
Using either the ladder operator method or the recursion relation, express all {j,m} eigenkets in terms of
|j1, j2;m1,m2⟩, Write your answer as

|j = 1,m = 1⟩ = 1√
2
|+, 0⟩ − 1

2
|0,+⟩ , . . . ,

where + and 0 stand for m1,2 = 1, 0, respectively.
Solution:
Since maximum value of j = j1 + j2 = 2. The state corresponding to this added momenta must be |22⟩ =
|m1,m2⟩. Since we denote |m1 = 1;m2 = 1⟩ = |++⟩ and |m1 = 1;m2 = 0⟩ = |+0⟩ and |m1 = 1;m2 = −1⟩ =
|+−⟩we obtain

|22⟩ = |++⟩

Applying lowering operator on both sides gives
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2 |+0⟩ ⇒ |21⟩ = 1√

2

[
|0+⟩+ |+0⟩

]
Similarly applyig lowering operator again gives
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]
Since L1− |−±⟩ = 0 and L2− |±−⟩ = 0owering again gives
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Lowering one more time gies
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The state can’t be further lowered since all lowered states from now will be null kets. □
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