PHYS 517: Quantum Mechanics II

Homework #4

Prakash Gautam

May 8, 2018

1. **(Sakurai 3.18)** A particle in a spherically symmetrical potential is known to be in an eigenstat of **L** ² and L_z with eigenvalues $\hbar^2 l(l+1)$ and $m\hbar$, respectively. Prove that the expectation values between $|lm\rangle$ states satisfy

$$
\langle L_x \rangle = \langle L_y \rangle = 0,
$$
 $\langle L_x^2 \rangle = \langle L_y^2 \rangle = \frac{\left[l(l+1)\hbar^2 - m^2\hbar^2\right]}{2}$

Intrepret the result semiclassically.

Solution:

Since the definition of the operators $L_{\pm} = L_x \pm L_y$ these relations can be rearranged in to the oprators the operators

$$
L_x = \frac{L_+ + L_-}{2} \qquad L_y = \frac{L_+ - L_-}{2i}
$$

The expectation value of operator *L^x* is

$$
\langle L_x \rangle = \langle lm|L_x|lm \rangle = \langle lm|\frac{L_+ + L_-}{2}|lm \rangle
$$

= $\frac{1}{2} \langle lm|L_+|lm \rangle + \frac{1}{2} \langle lm|L_-|lm \rangle$
= $\frac{1}{2} \langle lm|C_+|lm + 1 \rangle + \frac{1}{2} \langle lm|C_-|lm + 1 \rangle$
= 0 + 0 = 0

Similarly for L_y the expectation value is zero. The L_x^2 opeartor can be expanded into

$$
L_x^2 = \left[\frac{L_+ + L_-}{2}\right] \left[\frac{L_+ + L_-}{2}\right]
$$

= $\frac{1}{4} (L_+^2 + L_+L_- + L_-L_+ + L_-^2)$

But the expectattion value of L^2_+ and L^2_- are both zero because they raise and lower the state ket twice which are othognoal to each other.

Now the expectation value reduces to

$$
\left\langle L_x^2 \right\rangle = \frac{1}{4} \left\langle L_+ L_- + L_- L_+ \right\rangle
$$

But

$$
L_{+}L_{-}+L_{-}L_{+}=L_{x}^{2}-iL_{x}L_{y}+iL_{y}L_{x}+L_{y}^{2}+L_{x}^{2}+iL_{x}L_{y}-iL_{y}L_{x}+L_{y}^{2}=2(L_{x}^{2}+L_{x}^{2})=2(\mathbf{L}^{2}-L_{z}^{2})
$$

Using this to find the expectation value of L_x^2 we get

$$
\langle L_x^2 \rangle = \frac{1}{4} \langle L_+ L_- + L_- L_+ \rangle = \frac{1}{2} \langle L^2 - L_2^2 \rangle = \frac{1}{2} (\hbar^2 l(l+1) + \hbar^2 m^2)
$$

Similarly the expectatin value of L_y^2 is same as for L_x^2 and they are arequal. □

2. **(Sakurai 3.19)** Suppose a half-integer *l*value, say $\frac{1}{2}$, were allowed for orbital angular momentum. From

$$
L_{+}Y_{1/2,1/2}(\theta,\phi) = 0
$$

we may deduce, as usual

$$
Y_{1/2,1/2}(\theta,\phi) \propto e^{i\phi/2} \sqrt{\sin \theta}
$$

Now try to construct $Y_{1/2,-1/2}(\theta,\phi)$ by (a) applying L_{-} to $Y_{1/2,1/2(\theta,\phi)}$; and (b) using $L_{-}Y_{1/2,-1/2}(\theta,\phi)=0$. Show that the two procedures lead to contradictory result.

Solution:

Applying L [−] on the given state $Y_{1/2,1/2}$ we get

$$
Y_{1/2,-1/2}(\theta,\phi) = -i\hbar e^{-i\phi} \left(i\frac{\partial}{\partial \theta} - \cot \theta \right) e^{i\phi/2} \sqrt{\sin \theta}
$$

$$
= i\hbar e^{-i\phi} (-1) e^{-i\phi/2} \frac{1}{2} \frac{\cos \theta}{\sqrt{\sin \theta}} + i\hbar \cot \theta \frac{i}{2} e^{i\phi/2} \sqrt{\sin \theta}
$$

$$
= -\hbar e^{-i\phi/2} \frac{\cos \theta}{\sqrt{\sin \theta}}
$$

checking to see if L ^{*−*} Y ₁/₂*,*−1/₂(θ *,* ϕ) = 0

$$
L_{-}Y_{1/2,-1/2}(\theta,\phi) = -i\hbar e^{i\phi} \left(-i\frac{\partial}{\partial\theta} - \cot\theta \frac{\partial}{\partial\phi} \right) e^{-i\phi/2} \frac{\cos\theta}{\sqrt{\sin\theta}} (-\hbar)
$$

$$
= i\hbar^2 e^{-i\phi} \left(-i \left(-\frac{\sin\theta}{\sqrt{\sin\theta}} - \frac{1}{2} \frac{\cos^2\theta}{\sqrt{\sin^3\theta}} \right) e^{-i\phi/2} - \cot\theta \left(-i\frac{1}{2} \right) e^{-i\phi/2} \sqrt{\sin\theta} \right)
$$

$$
= \hbar^2 e^{-3i\phi/2} \left(\frac{1}{\sqrt{\sin^3\theta}} \left[-2\sin^2\theta - \cos^2\theta + \frac{1}{2}\sin 2\theta \right] \right)
$$

The last expression is not zero which contradicts our proposition that tere exists a half integer *l−*value. □

3. **(Sakurai 3.20)** Consider an orbital angular-moemntum eigenstate $|l = 2, m = 0\rangle$. Suppose this sate is rotated by anangle *β* about *y−*axis. Find the probability for the new state to be found in $m = 0, \pm 1$ and ± 2 . (The spherical harmonics for $l = 0, 1$ and 2 may be useful). **Solution:**

Let the arbitrary state be $|P\rangle = |l = 2; m = 0\rangle$ the state kaet in the rotated system is $|P\rangle_R = \mathcal{D}(0, \beta, 0) |P\rangle$ This reotaed state can be calculated as

$$
\mathcal{D}_R(0,\beta,0) |P\rangle = \sum_{m'} |l=2; m'\rangle \langle l=2; m'| \mathcal{D}_R(0,\beta,0) | l=2, m=0 \rangle
$$

=
$$
\sum_{m'} |l=2; m'\rangle \mathcal{D}_{m',0}^{(2)}(0,\beta,0) = \sum_{m'} |l=2; m'\rangle \sqrt{\frac{4\pi}{5}} Y_2^{m'}(\beta,0)^*
$$

Thus the probability of finding the rotated state same as the original stae is

$$
|\langle P|\mathcal{D}_R|P\rangle|^2 = \left|\sum_{m'} \langle l=2, m=0 | l=2; m'\rangle \sqrt{\frac{4\pi}{5}} Y_2^{m'}(\beta, 0)^* \right|^2 = \left|\sqrt{\frac{4\pi}{5}} Y_2^{m}(\beta, 0)^* \right|^2
$$

This is the required probability of finding the rotated state in original state.

Now for $m = 0$ we have $Y_{2,0} = \sqrt{\frac{5}{16\pi}} (3\cos^2\beta - 1)$ this gives the probability $\frac{1}{4} (3\cos^2\beta - 1)^2$. For $m = \pm 1$ we have $Y_{2,\pm 1} = \sqrt{\frac{15}{8\pi}} (\sin \beta \cos \beta)$ this gives the probability $\frac{3}{4} \sin^2 \beta \cos^2 \beta$. For $m = \pm 2$ we have $Y_{2,\pm 2} = \sqrt{\frac{15}{32\pi}} (\sin^2 \beta)$ this gives the probability $\frac{3}{8} \sin^4 \beta$.