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1. (Sakurai 3.1) Find the eigenvectors of σy =

(
0 −i
i 0

)
. Suppose an electron is in spin state

(
α
β

)
. If Sy is

measured, what is the probability of the result ℏ/2?
Solution:
Suppose the eignevalues of the matrix are λ. The characterstics equation for the matrix is

(0− λ)(0− λ)− (−i · i) = 0 ⇒ λ = ±1

Let the eigenvector be

(
x
y

)
. Then the eigenvector corresponding to λ = 1 we have

(
0 −i
i 0

)(
x
y

)
= λ

(
x
y

)
⇒ −iy = x

ix = y
⇒ x = 1

y = i

Normalizing this eivenvector we have the normalization factor
√
12 + 12 =

√
2. So the required normalized

eigenvector corresponding to λ = 1 is

1√
2

(
1
i

)
Then the eigenvector corresponding to λ = −1 we have(

0 −i
i 0

)(
x
y

)
= λ

(
x
y

)
⇒ −iy = −x

ix = −y
⇒ x = 1

y = −i

Normalizing this eivenvector we have the normalization factor
√
12 + 12 =

√
2. So the required normalized

eigenvector corresponding to λ = −1 is

1√
2

(
1
−i

)
So the eigenvectors corresponding to each eigenvalues are

λ = 1 → 1√
2

(
1
i

)
λ = −1 → 1√

2

(
1
−i

)

Let the arbitrary spin state be |γ⟩ =
(
α
β

)
such that its dual correspondence is ⟨γ| =

(
α∗ β∗). Since the

matrix representation of the Sy operator is ℏ
2σy. The probability that the state be measure to be in Sy

with eigenvalue ℏ
2 is

⟨γ|ℏ/2σ2|γ⟩ =
(
α∗ β∗) ℏ

2

(
0 −i
i 0

)(
α
β

)
=

ℏ
2

(
α∗ β∗)(−iβ

iα

)
=

iℏ
2
(−βα∗ + β∗α)

So the probability of measuring the given state in |Sy; +⟩ state is iℏ
2 (αβ∗ − α∗β). □
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2. (Sakurai 3.2) Find, by explicit construction using Pauli matrices, the eigenvalues for Hamiltonian

H = −2µ

ℏ
S ·B

for a spin 1
2 particle in the presence a magnetic B = Bxx̂+Byŷ +Bz ẑ.

Solution:
The hamiltonian operator in the given magnetic field as

H = −2µ

ℏ
(SxBx + SyBy + SzBz)

Since the spin operators Sx, Sy and Sz are the pauli matrices with a factor of ℏ/2 we can write the above
expression as

H = −2µ

ℏ
ℏ
2

[(
0 1
1 0

)
Bx +

(
0 −i
i 0

)
By +

(
1 0
0 −1

)
Bz

]
= −µ

(
Bz Bx − iBy

Bx + iBy −Bz

)
The characterstics equation for the this matrix is

((Bz − λ)(−Bz − λ)− (Bx − iBy)(Bx + iBy)) = 0 ⇒ λ2 −B2
z − (B2

x +B2
y) = 0 ⇒ λ = ±|B|

So the eigenvalue of the Hamiltonian which is −µ times the matrix is −µ · λ = ∓µ|B|. □

3. (Sakurai 3.3) Consider 2× 2 matrix defined by

U =
a0 + iσ · a
a0 − iσ · a

where a0 is a real number and a is a three-dimensional vector with real components.

(a) Prove that U is unitary and unimodular.
Solution:
Given matrix U and hermitian conjugate can be written as

U =
a0 + i

∑
j ajσj

a0 − i
∑

j ajσj
U† =

a0 − i
∑

j ajσ
†
j

a0 − i
∑

j ajσ
†
j

Multiplying these two to check for unitarity

U†U =
a0 − i

∑
j ajσ

†
j

a0 − i
∑

j ajσ
†
j

·
a0 + i

∑
j ajσj

a0 − i
∑

j ajσj

=
a20 + ia0

∑
j σjaj − ia0

∑
j σ

†
jaj +

∑
j

∑
k σ

†
jajσkak

a20 − ia0
∑

j σjaj + ia0
∑

j σ
†
jaj +

∑
j

∑
k σ

†
jajσkak

Since each pauli matrices are Hermitian, for each i we have σ†
i = σi. This makes the numerator the

exact same as the denominator. Thus they cancel out

U†U =
a20 + ia0

∑
j σjaj − ia0

∑
j σjaj +

∑
j

∑
k σjajσkak

a20 − ia0
∑

j σjaj + ia0
∑

j σjaj +
∑

j

∑
k σjajσkak

= 1

This shows that this matrix is unitary. Expanding out the matrix in terms of the pauli matrices we
get

detU =

∣∣∣∣a0 + ia3 ia1 + a2
ia1 − a2 a0 − ia3

∣∣∣∣∣∣∣∣ a0 − ia3 −ia1 + a2
−ia1 − a2 a0 + ia3

∣∣∣∣ =
(a0 + ia3)(a0 − ia3)− (ia1 + a2)(ia1 − a2)

(a0 − ia3)(a0 + ia3)− (−ia1 + a2)(−ia1 − a2)
=

a20 + a21 + a22 + a23
a20 + a21 + a22 + a23

= 1

This shows that the matrix is unimodular. □
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(b) In general, a 2×2 unitary unimodular matrix represents a rotation in three dimensions. Find the axis
and the angle of rotation appropriate for U in terms of a0, a1, a2 and a3.
Solution:
The matrix can be rewritten as

U =
1

a20 + a2

(
a0 − a2 + 2ia0a3 2a0a2 + 2ia0a1
−2a0a2 + 2ia0a1 a0 − a2 − 2ia0a3

)

Since the most general unimodular matrix of the form

(
a b

−b∗ a∗

)
represent a rotaion through an

angle ϕ through the direction n̂ = nxx̂+ nyŷ + nz ẑ related as

Re(a) = cos

(
ϕ

2

)
, Im(a) = −nz sin

(
ϕ

2

)
(1)

Re(b) = −ny sin

(
ϕ

2

)
, Im(b) = −nx sin

(
ϕ

2

)
(2)

Making these comparision in this matrix we get

cos

(
ϕ

2

)
=

a20 − a2

a20 + a2
⇒ ϕ = 2acos

(
a20 − a2

a20 + a2

)
And similarly we get

nx = − a1
|a|

ny = − a2
|a|

nz = − a3
|a|

This gives the rotation angle and the direction of rotation for this given unimodular matrix. □

4. (Sakurai 3.9) Consider a sequence of rotations represented by

D(1/2)(α, β, γ) = exp

(
−iσ3α

2

)
exp

(
−iσ2β

2

)
exp

(
−iσ3γ

2

)
=

(
e−i(α+γ)/2 cos β

2 −e−i(α+γ)/2 cos β
2

e−i(α−γ)/2 sin β
2 ei(α+γ)/2 cos β

2

)

Solution:
Again this final matrix can be written as a coplex form as

D1/2(α, β, γ) =

(cos(α+γ
2

)
+ i sin

(
α+γ
2

))
cos

(
β
2

)
−
(
cos

(
α+γ
2

)
− i sin

(
α+γ
2

))
cos

(
β
2

)
(
cos

(
α+γ
2

)
+ i sin

(
α+γ
2

))
cos

(
β
2

)
−
(
cos

(
α+γ
2

)
− i sin

(
α+γ
2

))
cos

(
β
2

)
Let ϕ be the angle of rotation represented by this final rotation matrix. Using again the equations (1) we
get

cos

(
ϕ

2

)
= cos

(
α+ γ

2

)
cos

(
β

2

)
⇒ ϕ = 2 cos−1

[
cos

(
α+ γ

2

)
cos

(
β

2

)]
This gives the angular rotation value for this matrix. The direction of rotation can similarly be found by
using (1) to calculate the directions. □

5. (Sakurai 3.15a) Let J be angular momentum. Using the fact that Jx, Jy, Jz and J± ≡ Jx±Jy satisfy the
usual angular-momentum commutation relations, prove

J2 = J2
z + J+J− − ℏJz

.
Solution:
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Multiplying out J+ and J− we get

J+J− = (Jx + iJy)(Jx − iJy)

= J2
x − iJxJy + iJyJx + J2

y

= J2
x − i[Jx, Jy] + J2

y

= J2
x + J2

y − i(iℏJz)
= J2 − J2

z + ℏJz

Rearranging above expression gives J2 = J2
z + J+J− − ℏJz which completes the proof. □
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