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. (Sakurai 3.1) Find the eigenvectors of o, = OZ>. Suppose an electron is in spin state <g) If S, is
measured, what is the probability of the result i/2?7
Solution:

Suppose the eignevalues of the matrix are A. The characterstics equation for the matrix is

O=MN0-X)—(—i-i)=0 =A==l

Let the eigenvector be (;) Then the eigenvector corresponding to A = 1 we have

(0 —i> (m) (m) —iy = z =1
- =A = = .
1 0 Y Y =y y =1
Normalizing this eivenvector we have the normalization factor v/12 4+ 12 = /2. So the required normalized
eigenvector corresponding to A =1 is
/ <1>
V2 \i

Then the eigenvector corresponding to A = —1 we have

DO -
v 0 Y Y o =—y Yy = —

Normalizing this eivenvector we have the normalization factor v/12 + 12 = V2. So the required normalized
eigenvector corresponding to A = —1 is
V2 \~i

So the eigenvectors corresponding to each eigenvalues are

) e ()

Let the arbitrary spin state be |y) = (g

matrix representation of the S, operator is %ay. The probability that the state be measure to be in Sy
with eigenvalue % is

o= 305 (0 5) (5) =5 9 (W) = G s v

So the probability of measuring the given state in |S,;+) state is 2 (a8* — a*B). O

) such that its dual correspondence is (y| = (a* ﬂ*). Since the



2. (Sakurai 3.2) Find, by explicit construction using Pauli matrices, the eigenvalues for Hamiltonian

21
H=--—-S-B
h
for a spin % particle in the presence a magnetic B = B,X + B, + B.Z.

Solution:
The hamiltonian operator in the given magnetic field as

2
H= —# (SeBx + S,B, + S.B.)

Since the spin operators S, S, and S, are the pauli matrices with a factor of h/2 we can write the above

expression as
2ub /0 1 0 —i 1 0
H__hQ[(l 0)3”(1' 0>By+(o —1)32}

o B.  B,—iB,
- M\B,+iB, -B.

The characterstics equation for the this matrix is
(B = A)(=B. = \) = (B —iBy) (B, +iB,)) =0 =\ —B?—(B2+B;)=0 = \=%|B|
So the eigenvalue of the Hamiltonian which is —p times the matrix is —p - A = Fu|B]. O

3. (Sakurai 3.3) Consider 2 x 2 matrix defined by

ap+io-a
U -
ap—io-a
where ag is a real number and a is a three-dimensional vector with real components.

(a) Prove that U is unitary and unimodular.
Solution:
Given matrix U and hermitian conjugate can be written as

; .y ; o
U_ao—i—zzjajaj UT_ao—szaJaj
ap —1i).;a;0; ag— iy, ajo;

Multiplying these two to check for unitarity

; ol ; .
ap — iy ;a;0; ap+i)y_;a;o;

ag—izjaja; aO_iZjaij

ag +iag Yo 0ja; —iag Y, Jjaj +22 2 J;fajokak

ag —iag - ; 0ja; +iag Yy J;faj +22 ojajakak

;r = 0. This makes the numerator the

Ut =

Since each pauli matrices are Hermitian, for each i we have o
exact same as the denominator. Thus they cancel out

— at +iag 3,055 —iag Yo oja; + 3. 3, 05a;0kay, _,
ag —iag Y ; oja; +iag Y oja; + 305> 0ia0ka

This shows that this matrix is unitary. Expanding out the matrix in terms of the pauli matrices we

get
ap + ’iag ial + a9
det U — iay —az ap—iaz|  (ag+ias)(ag —iaz) — (iay + az)(iay —az2)  af+ai+ a3+ a3
ag —ias —iay + ag (aop — ia3)(ap + iaz) — (—iay + az)(—iar —az) a3 + a2 + a3 + a3
72.(11 — a2 ag + ia3
This shows that the matrix is unimodular. O

=1



(b) In general, a 2 X 2 unitary unimodular matrix represents a rotation in three dimensions. Find the axis

and the angle of rotation appropriate for U in terms of ag, a1, a2 and as.
Solution:
The matrix can be rewritten as

. 1 (ao —a%+ 21aqas3 2apas + 2tagaq >

~ a} + a2 \ —2apaz + 2iapa;  ap — a? — 2iagas

. . . b .
Since the most general unimodular matrix of the form <_CZ* a*) represent a rotaion through an

) 1)

) @
Making these comparision in this matrix we get

0] a? — a? a? — a?
cos< = = ¢ = 2acos 2 5

2 a? + a? af +a

angle ¢ through the direction fi = n,;X + n,y + n.2 related as

IVIRSS

Re(a) = cos@), Im(a):—nzsin(

IIRSY

Re(b) = —n, sin(‘§>, Tm(b) = —ne sin(

And similarly we get

ai az as
Ng = —— Ny = —— Ny, =——
|al |al |a
This gives the rotation angle and the direction of rotation for this given unimodular matrix. O

4. (Sakurai 3.9) Consider a sequence of rotations represented by
", i, i —i(a+y)/2 B _—i(aty)/2 B
(1/2) _ 1030 10203 iosy) (e cos e cos &
D (o, 8,7) = exp< 9 exXp 2 oxp 2  \emie=)/2gip é e t)/2 cos g

Solution:
Again this final matrix can be written as a coplex form as

'Dl/z(a B.y) = cos QTM) +zsin(a7+7)) cos g — (cos QTM) — 251n(°‘7+7)) cos g
o cos(2FY) +isin(252)) cos g — (cos(232) —isin(2F2)) cos g

Let ¢ be the angle of rotation represented by this final rotation matrix. Using again the equations (1) we

get

cos(i) = cos(a—gv) cos(g) = ¢$=2cos ! {cos(a ;_ 7) cos(i)]

This gives the angular rotation value for this matrix. The direction of rotation can similarly be found by
using (1) to calculate the directions. O

5. (Sakurai 3.15a) Let J be angular momentum. Using the fact that J,, J,, J, and Jy = J, = J,, satisfy the
usual angular-momentum commutation relations, prove

J2=J2+JyJ- —hJ,

Solution:



Multiplying out J and J_ we get

Jpd_ = (Jp +idy)(Jp — i)
=J; —idody +idyJe + J]
=J —ilJa, Iy + ]
=J2+J —i(ihJ.)
=J?2—J2+hJ,

Rearranging above expression gives J? = J2 + J,.J_ — h.J, which completes the proof.



