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1. (a) Prove the following
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where ¢, (p’) = (p'|a) and qﬁg( ") = (p'|5) are momentum-space wave functions.
Solution:
We know
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With the help of these two relations we can simplify the quantity we want as

wmmr:/muﬂMfﬂfm> e [ da' el = 1)
= [ @le') (') e (. Wlele') == f)2))
= [ [ i) (") ) o e [ e = 1)
o o () el

27Th/dp”/x exp( i hp ) )(p”|a> da’

We can use integral under differential sign to evaluate the dz’ integral as
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Using ths in the dz’ integral above we get
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This gives us the requied result.
(Blsla) = [ dp' (Blv') @/ lale) o

The result above is (p'|z|a) = ihz (p'|a) Substuting this in (?7) we get
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Writing (81p') = ¢5(p') and (|a) = ga(p') we get
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This is the requied expression.

(b) What is the physical significance of

=
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where x is the position operator and = is some number with the unit of momentum? Justify your
answer.

Solution:

In the position eigenbasis the position translation operator is U(l) = exp(i—%’l) where [ is a constant

of unit of lenght and p is the momentum operator.

We have here the roles of operator  and p changed and [ and = changed. Which suggests that this
operator function can works as a momentum translation operator in momentum eigenbasis. Wl

2. If the Hamiltonian H is given as
H = Hyy [1)X1] + Hag [2)(2] + H12 [1)(2]

What principle is violated? Illustrate your point by explicitly attempting to solve the most general time-
dependent problem using an illegal Hamiltonian of this kind. (Assume Hi; = Hao = 0 for simplicity.)
Solution:

For a operator to be a valid Hamiltonian it has to be a Hermitian operator. We can check if this is a
Hermitian operator.

H' = Hiy [1) (1] + H3, |2) (2| + HYy 1) (2] = Hiy |1) (1] + Ha22 [2) (2] + Hi2 [1) (2]

Since H' # H the given hamiltonian is clearly not Hermitian. So this operator the energy eigenkets
won’t be real. Also, the time translation operator U(t) = exp(—iht) will not be unitary which would
make the time evolved states not conserve the inner product so, it violates the principle of probability

violation.

Setting Hy11 = H2o = 0 the Hamiltonian becomes H = His |1)2]. Lets check the unitary property of the

unitary operator
i Ht Ht i(HT — H)t
Ut U(t) = exp(Z - ) ~eXp(—lh> = exp(l(h))

For the operator to remain unitary, the exponential should be zero but since H' # H the exponent will
be nonzero and it violates the principle that the time evolution operator si unitary. Bl




3. Let |a’) and |a”) be eigenstates of a Hermitian operator A with eigenvalues o’ and a”, respectively
(a’ # a”). The Hamiltonian operator is given by

H = |a) 6 (a"| + |a") 6 (a']

where ¢ is just a real number.

(a)

Clearly, |a’) and |a”) are not eigenstates of teh Hamiltonian. Write down the eigenstates of the
Hamiltonian. WHat are their energy Eigenvalues?

Solution:

Let the energy eigenket of this hamiltonian operator be |a) = pla’) + ¢|a”). And E be the energy
eigen values. So operating by H on this state leads to

Ha) = (|a') 5 (a"] + |a") 5 (a'])(p|a’) + qla”))
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If this is to be the energy eigenstate then it should equal E |a) = Epla’) + Eqla”). Since |a’) and
|a’) are orthogonal states, the coefficient comparision leads to
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So the energy eigenvalues are E = +4. Also since we require the eigenstate be normalized we require
p? + ¢*> = 1. This results in
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So the requried energy eigenkets are
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Where |a) is the eigenket corresponding to eigenvalue +¢ and |«_) is the eigenket corresponding
to eigenvalue —9 B

Suppose the system is known to be in the state |a') at t = 0. Write down the state vector of
Schrodinger picture for ¢ > 0.

Solution:

The time evolution operator is U(t) = exp(—%). Since |a’) are not the eiergy eigenkets, we can
write them in terms of the eigenkets of Hamiltonian operator. From (??) we can add and subtract
the two energy eigenkets to find
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Application of time evolution operator to |a’) leads to
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Again the application of (??) we can convert back to the basis states given
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Euler identity can be used to convert the complex exponentials to sines and cosies, which give
ot ot
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This gives the time evolution of state |a’) under this hamiltonian. W

(¢) What is the probability for finding the system in |a”) for ¢ > 0 if the system is known to be in the
state |a’) at t =07
Solution:
The probability of finting the system knon to be in |a’) at a later time ¢ > 0 is given by | (a”|U(¢)]a’)|?

which can be evauated using (?7)
2
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So the probability of finding the |a’) to be at |a”’) at a later time is the oscillating function. The
physical situation corresponding to this problem is a Neutrino oscillation. l
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Solution:

Considering the factor inside the exponential
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If we let the constant terms t = d? (zk — ipf;z) then in the exponential we get
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With this the integral becomes
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This integral is a standard gamma function whose value is
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Using this in our original equation we get
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We can substitute back the variable ¢ back to get
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Which is the required solution H
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