PHYS: 502 Quantum Mechanics I

Homework #3

Prakash Gautam

February 1, 2018

- 1. Using the rules of bra-ket algebra, prove or evaluate the following:
 - (a) tr(XY) = tr(YX), where X and Y are operators

Solution:

The definition of trace of an operator is $tr(A) = \sum_{a'} \langle a'|A|a' \rangle$. Using this definition for operator

XY we get

$$\begin{split} \operatorname{tr}(XY) &= \sum_{a'} \left\langle a' | XY | a' \right\rangle & \text{(Definition)} \\ &= \sum_{a'} \sum_{a''} \left\langle a' | X | a'' \right\rangle \left\langle a'' | Y | a' \right\rangle & \text{(} \sum_{a''} |a'' \rangle \langle a'' | = 1) \\ &= \sum_{a'} \sum_{a''} \left\langle a'' | Y | a' \right\rangle \left\langle a' | X | a'' \right\rangle & \text{(Complex number commute)} \\ &= \sum_{a''} \left\langle a'' | YX | a'' \right\rangle & \text{(} \sum_{a'} |a' \rangle \langle a' | = 1) \\ &= \operatorname{tr}(YX) & \text{(By definition)} \end{split}$$

Thus tr(XY) = tr(YX) as required

(b) $(XY)^{\dagger} = Y^{\dagger}X^{\dagger}$, where X and Y are operators.

Solution:

Let $|\alpha\rangle$ be any arbitrary ket.

Let
$$Y |\alpha\rangle = |\gamma\rangle$$
 $\leftarrow DC \rightarrow \langle \alpha | Y^{\dagger} = \langle \gamma |$

Using this fact and operating the arbitrary $|\alpha\rangle$ by the operator XY we get,

$$\begin{array}{ll} XY \mid \! \alpha \rangle = X \mid \! \gamma \rangle & (\because Y \mid \! \alpha \rangle = \mid \! \gamma \rangle \text{ by assumption)} \\ \langle \alpha \mid (XY)^\dagger = \langle \gamma \mid X^\dagger & (\because \text{ Taking DC on both sides}) \\ \langle \alpha \mid (XY)^\dagger = \langle \alpha \mid Y^\dagger X^\dagger & (\because \langle \gamma \mid = \langle \alpha \mid Y^\dagger) \end{array}$$

Which implies $(XY)^{\dagger} = X^{\dagger}Y^{\dagger} \blacksquare$

(c) $\exp(if(A)) = ?$ in ket-bra form, where A is a Hermitian operator whose eigenvalues are known.

Solution:

Assuming the function can be written as $e^X = 1 + f(X) + \frac{f^2(X)}{2!} + \frac{f^3(X)}{3!} + \cdots$, where X is an operator in the ket space. We have

$$e^{if(A)} = \sum_{a'} e^{if(A)} |a'\rangle\langle a'|$$

$$\left(\because \sum_{a'} |a'\rangle\langle a'| = 1\right)$$

Here $|a'\rangle$ are the eigenkets of the operator A as it is given to be a Hermitian operator. Using the expansion for $e^{if(A)}$ we get,

$$\begin{split} e^{if(A)} &= \sum_{a'} \left(1 + f(A) + \frac{f^2(A)}{2!} + \frac{f^3(A)}{3!} + \cdots \right) |a'\rangle\langle a'| \\ &= \sum_{a'} \left(|a'\rangle + f(A)|a'\rangle + \frac{1}{2!} f^2(A)|a'\rangle + \cdots \right) \langle a'| \\ &= \sum_{a'} \left(|a'\rangle + f(a')|a'\rangle + \frac{1}{2!} f^2(a')|a'\rangle + \cdots \right) \langle a'| \quad (\because X(|\alpha\rangle\langle\beta|) = (X|\alpha\rangle) \langle\beta|) \\ &= \sum_{a'} \left(|a'\rangle + f(a')|a'\rangle + \frac{1}{2!} f^2(a')|a'\rangle + \cdots \right) |a'\rangle \langle a'| \quad (\because f(X)|a'\rangle = f(a')|a'\rangle \quad \text{for Hermitian } X) \\ &= \sum_{a'} \left(1 + f(a') + \frac{1}{2!} f^2(a') + \cdots \right) |a'\rangle \langle a'| \quad (\because (a|\alpha\rangle) \langle\beta| = a(|\alpha\rangle\langle\beta|)) \\ &= \sum_{a'} e^{f(a')} |a'\rangle\langle a'| \end{split}$$

Which is the required form for the operator $e^{f(A)}$.

- 2. A spin 1/2 system is known tobe in an eigenstate of $\mathbf{S} \cdot \hat{\mathbf{n}}$ with eigenvalue $\hbar/2$, where $\hat{\mathbf{n}}$ is a unit vector lying in the xz-plane that makes and angle γ with the positive z-axis.
 - (a) Suppose S_x is measured. What is the probability of getting $\hbar/2$

Solution:

For a two state system the general stae of system can be represented as $|\hat{\mathbf{n}};+\rangle = \cos\frac{\beta}{2}|+\rangle + e^{i\alpha}\sin\frac{\beta}{2}|-\rangle$, where α is the polar angle and β is the azimuthal angle. For this problem the polar angle is $\alpha = 0$ and azimuthal angle is $\beta = \gamma$. So the given system and $|S_x;+\rangle$ states are

$$|\hat{\mathbf{n}};+\rangle = \sin\frac{\gamma}{2}|+\rangle + \cos\frac{\gamma}{2}|-\rangle; \quad |S_x;+\rangle = \frac{1}{\sqrt{2}}|+\rangle + \frac{1}{\sqrt{2}}|-\rangle$$

Since by definition the probability of measuring any state that is known to be in $|beta\rangle$ in a state $|\alpha\rangle$ is given by $|\langle\alpha|\beta\rangle|^2$. So the probability of measuring $|S_x;+\rangle$ state when the system is known to be in $|\hat{\mathbf{n}};+\rangle$ stae is

$$\begin{aligned} \left| \left\langle S_x; + |\hat{\mathbf{n}}; + \right\rangle \right|^2 &= \left| \left(\frac{1}{\sqrt{2}} \left\langle + \right| + \frac{1}{\sqrt{2}} \left\langle - \right| \right) \left(\sin \frac{\gamma}{2} \left| + \right\rangle + \cos \frac{\gamma}{2} \left| - \right\rangle \right) \right|^2 \\ &= \left| \frac{1}{\sqrt{2}} \sin \frac{\gamma}{2} + \frac{1}{\sqrt{2}} \cos \frac{\gamma}{2} \right|^2 \\ &= \frac{1}{2} \sin^2 \frac{\gamma}{2} + 2 \frac{1}{\sqrt{2}} \sin \frac{\gamma}{2} \frac{1}{\sqrt{2}} \cos \frac{\gamma}{2} + \frac{1}{2} \cos^2 \frac{\gamma}{2} \\ &= \frac{1}{2} (1 + \sin \gamma) \end{aligned}$$

So the probability of measuring the $|\hat{\mathbf{n}}\rangle$ state in $|S_x;+\rangle$ state is $(1+\sin\gamma)/2$.

(b) Evaluate the dispersion in S_x –that is $\langle (S_x - \langle S_x^2 \rangle) \rangle$

Solution:

The S_x operator is $S_x = \frac{\hbar}{2}(|+\rangle\langle -|+|-\rangle\langle +|)$. The result of S_x state operated on the system at $|\hat{\mathbf{n}}\rangle$ is

$$S_x |\hat{\mathbf{n}}\rangle = \frac{\hbar}{2} (|+\rangle \langle -|+|-\rangle \langle +|) (\sin \frac{\gamma}{2} |+\rangle + \cos \frac{\gamma}{2} |-\rangle) = \frac{\hbar}{2} \cos \frac{\gamma}{2} |+\rangle + \frac{\hbar}{2} \sin \frac{\gamma}{2} |-\rangle$$

And the dual correspondence of the state $|\hat{\mathbf{n}}\rangle$ is $\langle \hat{\mathbf{n}}| = \sin \frac{\gamma}{2} \langle +| + \cos \frac{\gamma}{2} \langle -|$. So the expectation value of S_x is

$$\langle S_x \rangle = \langle \hat{\mathbf{n}} | S_x | \hat{\mathbf{n}} \rangle = \left(\sin \frac{\gamma}{2} \langle + | + \cos \frac{\gamma}{2} \langle - | \right) \left(\frac{\hbar}{2} \cos \frac{\gamma}{2} | + \rangle + \frac{\hbar}{2} \sin \frac{\gamma}{2} | - \rangle \right) = \frac{\hbar}{2} \left(2 \sin \frac{\gamma}{2} \cos \frac{\gamma}{2} \right) = \frac{\hbar}{2} \sin \gamma$$

Also the expectation value of operator S_x^2 is

$$\begin{split} \left\langle S_{x}^{2}\right\rangle &=\left\langle \hat{\mathbf{n}}|S_{x}S_{x}|\hat{\mathbf{n}}\right\rangle =\left(\sin\frac{\gamma}{2}\left\langle +|+\cos\frac{\gamma}{2}\left\langle -|\right)\right)\left(\frac{\hbar}{2}(|+\rangle\langle -|+|-\rangle\langle +|)\right)\left(\frac{\hbar}{2}\cos\frac{\gamma}{2}\left|+\right\rangle +\frac{\hbar}{2}\sin\frac{\gamma}{2}\left|-\right\rangle\right) \\ &=\left(\sin\frac{\gamma}{2}\left\langle +|+\cos\frac{\gamma}{2}\left\langle -|\right)\right)\left(\frac{\hbar^{2}}{4}\left(\sin\frac{\gamma}{2}\left|+\right\rangle +\cos\frac{\gamma}{2}\left|-\right\rangle\right)\right) \\ &=\frac{\hbar^{2}}{4}\left(\sin^{2}\frac{\gamma}{2}+\cos^{2}\frac{\gamma}{2}\right) \\ &=\frac{\hbar^{2}}{4} \end{split}$$

Now the dispersion by definition is

$$\left\langle \Delta S_x^2 \right\rangle \equiv \left\langle S_x^2 \right\rangle - \left(\left\langle S_x \right\rangle \right)^2 = \frac{\hbar^2}{4} - \left(\frac{\hbar}{2} \sin \gamma \right)^2 = \frac{\hbar^2}{4} \left(1 - \sin^2 \gamma \right) = \frac{\hbar^2}{4} \cos^2 \gamma$$

Which gives the dispersion in measurement of S_x of the system in $|\hat{\mathbf{n}}\rangle$.

3. Construct the transformation matrix that connects the S_z diagonal basis to the S_x diagonal basis. Show that your result is consistent withthe general relation $U = \sum |b^{(r)}\rangle\langle a^{(r)}|$

Solution:

The states $|S_x;\pm\rangle$ in the $|S_z;\pm\rangle\equiv|\pm\rangle$ state is given by $|S_x;\pm\rangle=\frac{1}{\sqrt{2}}(|+\rangle\pm|-\rangle)$. Since we know the transformation matrix form is

$$\begin{bmatrix} \langle S_x; + | + \rangle & \langle S_x; + | - \rangle \\ \langle S_x; - | + \rangle & \langle S_x; - | - \rangle \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} (\langle + | + \langle - | \rangle | + \rangle & (\langle + | + \langle - | \rangle | - \rangle) \\ (\langle + | - \langle - | \rangle | + \rangle & (\langle + | - \langle - | \rangle | - \rangle) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Let $|p\rangle = a |+\rangle + a |-\rangle$ in the old S_z basis, such that $a = \langle +|p\rangle$ and $b = \langle -|p\rangle$. This ket is transformed into

$$Mp = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} a\\ b \end{bmatrix} \equiv \frac{1}{\sqrt{2}} (a+b) \left| + \right\rangle + \frac{1}{\sqrt{2}} (a-b) \left| - \right\rangle \tag{1}$$

$$=\frac{1}{\sqrt{2}}(|+\rangle+|-\rangle)a+\frac{1}{\sqrt{2}}(|+\rangle-|-\rangle)b\tag{2}$$

$$= \frac{1}{\sqrt{2}}((|+\rangle + |-\rangle)\langle +|p\rangle + \frac{1}{\sqrt{2}}(|+\rangle - |-\rangle)\langle -|p\rangle) \tag{3}$$

$$= (|S_x; +\rangle \langle +| + |S_x; -\rangle \langle -|) |p\rangle \tag{4}$$

Which is in the form of $\sum |b^r\rangle\langle a^r|$.

4. Prove that $\langle \mathbf{x} \rangle \to \langle \mathbf{x} \rangle + d\mathbf{x}', \langle \mathbf{p} \rangle \to \langle \mathbf{p} \rangle$ under infinitesimal translation.

Solution:

Since given

$$[\mathbf{x}, \mathcal{T}(d\mathbf{x})] = d\mathbf{x}; \Rightarrow \mathbf{x}\mathcal{T}(d\mathbf{x}) - \mathcal{T}(d\mathbf{x})\mathbf{x} = d\mathbf{x}; \qquad \mathbf{x}\mathcal{T}(d\mathbf{x}) = d\mathbf{x} + \mathcal{T}(d\mathbf{x})\mathbf{x}$$

Let the state of system under translation be $|\beta\rangle = \mathcal{T}(d\mathbf{x}) |\alpha\rangle$, thus $\langle\beta| = \langle\alpha|\mathcal{T}^{\dagger}(d\mathbf{x})$. Now the expectation value of system before translation is $\langle\mathbf{x}\rangle = \langle\alpha|\mathbf{x}|\alpha\rangle$. The expectation value after translation is

$$\langle \mathbf{x} \rangle = \langle \beta | \mathbf{x} | \beta \rangle$$

$$= \langle \alpha | \mathcal{T}^{\dagger}(d\mathbf{x}) \mathbf{x} \mathcal{T}(d\mathbf{x}) | \alpha \rangle$$

$$= \langle \alpha | \mathcal{T}^{\dagger}(d\mathbf{x}) (d\mathbf{x} + \mathcal{T}(d\mathbf{x}) \mathbf{x}) | \alpha \rangle$$

$$= \langle \alpha | \mathcal{T}^{\dagger}(d\mathbf{x}) + \mathcal{T}^{\dagger}(d\mathbf{x}) \mathcal{T}(d\mathbf{x}) \mathbf{x} | \alpha \rangle$$

$$= \langle \alpha | \mathcal{T}^{\dagger}(d\mathbf{x}) + \mathbf{x} | \alpha \rangle$$

$$= \langle \alpha | \mathcal{T}^{\dagger}(d\mathbf{x}) | \alpha \rangle + \langle \alpha | \mathbf{x} | \alpha \rangle$$

$$= d\mathbf{x} + \langle \mathbf{x} \rangle$$

So the expectation value of position after translation is $\langle \mathbf{x} \rangle + d\mathbf{x}$. Similarly for momentum

 $|\beta\rangle = \mathcal{T}(d\mathbf{x}) |\alpha\rangle$, thus $\langle\beta| = \langle\alpha|\mathcal{T}^{\dagger}(d\mathbf{x})$. Now the expectation value of momentum before translation is $\langle\mathbf{p}\rangle = \langle\alpha|\mathbf{p}|\alpha\rangle$. The expectation value after translation is

$$\langle \mathbf{p} \rangle = \langle \beta | \mathbf{p} | \beta \rangle$$

$$= \langle \alpha | \mathcal{T}^{\dagger}(d\mathbf{x}) \mathbf{p} \mathcal{T}(d\mathbf{x}) | \alpha \rangle$$

$$= \langle \alpha | \mathcal{T}^{\dagger}(d\mathbf{x}) (0 + \mathcal{T}(d\mathbf{x}) \mathbf{p}) | \alpha \rangle$$

$$= \langle \alpha | \mathcal{T}^{\dagger}(d\mathbf{x}) \mathcal{T}(d\mathbf{x}) \mathbf{p} | \alpha \rangle$$

$$= \langle \alpha | \mathbf{p} | \alpha \rangle$$

So the expectation value of system after translation is still $\langle \mathbf{p} \rangle$.