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1. A two state system is is characterized by a Hamiltonian H11|1⟩⟨1|+H12 (|1⟩⟨2|+ |2⟩⟨1|)+H22|2⟩⟨2|
whereH11,H22, andH12 are real numbers with the dimension of energy, and |1⟩ and |2⟩ are eigenkets
of some observable ( ̸= H). Find the energy eigenkets and the corresponding energy eigenvalues.
Solution:
Let the energy eigenket be |E⟩ = p|1⟩+ q|2⟩ and the eigenvalues be λ. OPerating thsi state by the
given Hamiltonian Operator we get

H |E⟩ = H11|1⟩⟨1|+H12 (|1⟩⟨2|+ |2⟩⟨1|) +H22|2⟩⟨2|(p|1⟩+ q|2⟩)
= H11p ⟨1 |1⟩|1⟩+H11q ⟨1 |2⟩|1⟩+H12p ⟨1 |1⟩|2⟩+H12p ⟨2 |1⟩|1⟩+H12q ⟨1 |2⟩|2⟩
+H12q ⟨2 |2⟩|1⟩+H22p ⟨2 |1⟩|2⟩+H22q ⟨2 |2⟩|2⟩

= H11p|1⟩+H12p|2⟩+H12q|1⟩+H22q|2⟩
= (H11p+H12q) |1⟩+ (H12p+H22q) |2⟩

Since by assumption λ is the eigenvalue of this state we have H |E⟩ = λ |E⟩ which gives

λp |1⟩+ λq |2⟩ = (H11p+H12q) |1⟩+ (H12p+H22q) |2⟩

Comparing the coefficient of each independent we get

λp = (H11p+H12q) ; λq = (H12p+H22q)

⇒ (λ−H11)p−H12q = 0; p =
H12

λ−H11
q

H12p+ (H22 − λ)q = 0; ⇒ H12

(
H12

λ−H11

)
q + (H22 − λ)q = 0;

Solving this for λ we get

λ =
1

2
(H11 +H22)±

1

2

√
H2

11 − 2H11H22 + 4H2
12 +H2

22

These are the required eigenvalues of the given operator. This eigenvalues can be plugged back
into the given equation to get the values of p and q.

q = 1; p =
H12

H22 −H11

2
± 1

2

√
H2

11 − 2H11H22 + 4H2
12 +H2

22

1



So the required eigenstates are

|E⟩ =

 H12

H22 −H11

2
± 1

2

√
H2

11 − 2H11H22 + 4H2
12 +H2

22

 |1⟩+ |2⟩
The above eigenstae can be normalized if required to get the Energy eigenket. ■

2.(a) Compute
⟨
(∆Sx)

2
⟩
≡

⟨
S2
x

⟩
− ⟨Sx⟩2 where the expectation value is taken for the Sz+ state. Using

your result check the generalized uncertainity relation⟨
(∆A)2

⟩ ⟨
(∆B)2

⟩
≥ 1

4
|⟨[A,B]⟩|2

with A→ Sx, B → Sy.
Solution:
Let |+⟩ represent the |Sz; +⟩ state. Then the expectation value of Sx for |Sz; +⟩ can be calculated
as

Sz =
ℏ
2
(|+⟩ ⟨+| − |−⟩ ⟨−|) ; Sy =

iℏ
2
(− |+⟩ ⟨−|+ |−⟩ ⟨+|) ; Sx =

ℏ
2
(|+⟩ ⟨−|+ |−⟩ ⟨+|) ;

Sx |+⟩ =
ℏ
2
(|+⟩ ⟨−|+ |−⟩ |+⟩) |+⟩ = ℏ

2
|−⟩ ; Sx |−⟩ =

ℏ
2
(|+⟩ ⟨−|+ |−⟩ ⟨+|) |−⟩ = ℏ

2
|+⟩ ;

Sy |+⟩ =
iℏ
2
(− |+⟩ ⟨−|+ |−⟩ ⟨+|) ; |+⟩ = iℏ

2
|−⟩ ; Sy |−⟩ =

iℏ
2
(− |+⟩ ⟨−|+ |−⟩ ⟨+|) ; |−⟩ = − iℏ

2
|+⟩ ;

So the expectation values are

⟨Sx⟩ = ⟨+|Sx|+⟩ = ⟨+|
ℏ
2
|−⟩ = ℏ

2
⟨+|−⟩ = 0

⟨Sy⟩ = ⟨+|Sy|+⟩ = ⟨+|
iℏ
2
|−⟩ = −iℏ

2
⟨+|−⟩ = 0⟨

S2
x

⟩
= ⟨+|S2

x|+⟩ = ⟨+|SxSx|+⟩ = ⟨+|Sx
ℏ
2
|−⟩ = ℏ

2
⟨+| ℏ

2
|+⟩ = ℏ2

4
⟨+|−⟩ = ℏ2

4⟨
S2
y

⟩
= ⟨+|S2

y |+⟩ = ⟨+|SySy|+⟩ = ⟨+|Syi
ℏ
2
|−⟩ = iℏ

2
⟨+| −iℏ

2
|+⟩ = −i2ℏ

2

4
⟨+|−⟩ = ℏ2

4

Since [Sx, Sy] = iℏSz and |⟨[Sx, Sy]⟩|2 = ⟨[Sx, Sy]⟩ ⟨[Sx, Sy]⟩∗ we can write

⟨[Sx, Sy]⟩ = ⟨iℏSz⟩ = iℏ ⟨+|Sz|+⟩ = iℏ ⟨+| ℏ
2
|+⟩ = i

ℏ2

2
; ⟨[Sx, Sy]⟩∗ = −i

ℏ2

2
;

The dispersion in Sx and Sy can be calculated as

⟨
(∆Sx)

2
⟩
≡

⟨
S2
x

⟩
− ⟨Sx⟩2 =

ℏ2

4
− 0 =

ℏ2

4
;

⟨
(∆Sx)

2
⟩
≡

⟨
S2
x

⟩
− ⟨Sy⟩2 =

ℏ2

4
− 0 =

ℏ2

4
;
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Thus finally ⟨
(∆Sx)

2
⟩ ⟨

(∆Sy)
2
⟩
≥ 1

4
|⟨[Sx, Sy]⟩|2

ℏ2

4
· ℏ

2

4
≥ 1

4

(
i
ℏ2

2

)(
−iℏ

2

2

)
ℏ4

16
≥ ℏ4

16

Which is true as required. ■

(b) Check the uncertainity relation with A→ Sx, B → Sy for the Sx+ State

3. Find the linear combination of |+⟩ and |−⟩ kets that maximizes the unertainity product
⟨
(∆Sx)

2
⟩ ⟨

(∆Sy)
2
⟩
.

Verify explicitly that the linear combination you found, the uncertainty relation for Sx and Sy is
not violated.
Solution:
Let the linear combination that maximizes the Uncertainity product be p |+⟩ + q |−⟩. Since we
know that the coefficients are complex in general and that the overall phase is immaterial, we can
take p qnd q such that p = r and q = seiδ where r, s, δ are real numbers.

|α⟩ = r |+⟩+ seiδ |−⟩ ← DC → ⟨α| = ⟨+| r + ⟨−| se−iδ

Since Operator Sx ≡ ℏ
2 (|+⟩ ⟨−|+ |−⟩ ⟨+|) and Sy ≡ iℏ

2 (− |+⟩ ⟨−|+ |−⟩ ⟨+|) ; we can find the
expectation value

Sx |α⟩ =
ℏ
2
(|+⟩ ⟨−|+ |−⟩ ⟨+|) (r |+⟩+ seiδ |−⟩) = ℏ

2
(seiδ |+⟩+ r |−⟩)

⟨Sx⟩ = ⟨α|Sx|α⟩ =
[
⟨+| r + ⟨−| se−iδ

]
ℏ
2
(seiδ |+⟩+ r |−⟩)

=
ℏ
2

{
rseiδ + rse−iδ

}
=

ℏ
2
rs

{
eiδ + e−iδ

}
=

ℏ
2
rs2 cos(δ) = ℏrs cos δ

Also we can calculate the expectation value of S2
x which is⟨

S2
x

⟩
= ⟨α|SxSx|α⟩ = ⟨α|Sx

(
ℏ
2
(seiδ |+⟩+ r |−⟩)

)
=

[
⟨+| r + ⟨−| se−iδ

]
ℏ2

4
(r |+⟩+ seiδ |−⟩)

=
ℏ2

4
(r2 + s2) =

ℏ2

4
( By normalization condition)

Which can be use to calculate the dispersion of Sx as⟨
(∆Sx)

2
⟩
=

⟨
S2
x

⟩
− ⟨Sx⟩2 =

ℏ2

4
− ℏ2r2s2 cos2(δ) =

ℏ2

4

(
1− 4r2s2 cos2(δ)

)
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By similar procedure we can calculate
⟨
(∆Sy)

2
⟩
= ℏ2

4 (1− 4r2s2 sin2(δ). So their product is

⟨
(∆Sx)

2
⟩ ⟨

(∆Sy)
2
⟩
=

ℏ2

4

(
1− 4r2s2 cos2(δ)

)
· ℏ

2

4

(
1− 4r2s2 sin2(δ)

)
=

ℏ4

16
(1− 4r2s2 sin2(δ)− 4r2s2 cos2(δ) + 16r4s4 sin2(δ) cos2(δ))

=
ℏ2

16
(1− 4r2s2 + 16r4s44 sin2(δ) cos2(δ))

=
ℏ2

16
(1− 4r2s2 + 4r4s4 sin2(2δ))

Since r and s are constrained by normalization as s =
√
1− r2. The two parameters for the

variation of the product is δ and r (or s). The since sin2(2δ) can attain the maximum value of 1
whhich gives sin2(2δ) = 1;⇒ 2δ = π

2 ⇒ δ = π
4 . So the uncertainity product reduces to

⟨
(∆Sx)

2
⟩ ⟨

(∆Sy)
2
⟩
=

ℏ2

16
(1− 4r2s2 + 4r4s4)

=
ℏ2

16

(
1− 2r2s2

)2

The maximum value of this expression occurs when 2r2s2 is the minimum, which by inspection is
0 at r = 0. Using this value r = 0 in normalization condition r2 + s2 = 1 gives s = ±1. So the
linear combination we started reduces to

|α⟩ = 0 |+⟩ ± ei
π
4 |−⟩ =

(
1√
2
± i

1√
2

) ∣∣∣∣−⟩
■

4. Show that either [A,B] = 0 or [B,C] = 0 is sufficient for ⟨c′|a′⟩ to be
Solution:
Let the common eigenket of compatible operators A,B be |a′, b′⟩. Since they are observable the
set of these eigenkets form a complete set let them be |a′, b′⟩ , |a′′, b′′⟩ · · · |an, bn⟩ for n state (dimen-
sional) system. In the first way of invividually measuring the outcomes of B observables the total
probability of observing

∣∣c1⟩ state is then∣∣⟨c1∣∣a1⟩∣∣2 = ∑
i

∣∣⟨ci∣∣ai, bi⟩∣∣2∣∣⟨ai, bi∣∣s⟩∣∣2
■
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