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1. (Jackson 9.3) Two halves of a spherical metallic shell of radius R and infinite conductivity are separated
by a very small insulation gap. An alternating potential is applied between the two halves of the sphere
so that the potentials are £V coswt. In the long wavelength limit, find the radiation fields, the angular
distribution of radiated power and the total radiated power from the sphere.

Solution:
Two opposite charged halves of sphere creates a dipole so the dipole term in the potential expansion is the
dominant term. The dominant term on the potential expansion in terms of Legendre polynomial expansion
is
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The potential due to electric dipole pointing iz the positive z direction is given by
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The donimant term must be equal to the dipole potential. Equating these
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The potential in the sphere is oscillation with the frequency w as cos wt, The magnetic field of such oscillating
field can be written as
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Subsisting the value of the dipole moment we get
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The electric field is similarly given by
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Simplifying the vector cross products we simplify this down to
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Now the overall radiated power per solid angle is given by
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Subsisting the values of electric field and magnetic field in this expression we get
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Since 6 x (}5 = 7, the above expression simplifies to
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The total radiated power is thus the integral of the above expression over the total solid angle in the entire
spherical shell
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Integral of of the quantity sin® @ over the total solid angle is just % thus giving us the final expression
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This gives the total radiated power. O



