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1. (Jackson 6.1) In three dimensions the solution to the wave equation (6.32) for a point source in space
and time (a light flash at t’ = 0, x’ = 0) is a spherical shell disturbance of radius R = ct, namely the Green
function G(+). It may be initially surprising that in one or two dimensions, the disturbance possesses a
“wake”, even though the source is a “point” in space and time. The solutions for fewer dimensions than
three can be found by superposition in the superfluous dimension(s), to eliminate dependence on such
variable(s). For example, a flashing line source of uniform amplitude is equivalent to a point source in two
dimensions.
(a) Starting with the retarded solution to the three-dimensional wave equation, show that the source

f(x′, t) = δ(x′)δ(y′)δ(t′) , equivalent to a t = 0 point source at the origin in two spatial dimensions,
produces a two-dimensional wave,

Ψ(x, y, t) =
2cΘ(ct− ρ)√

c2t2 − ρ2

where ρ2 = x2 + y2 and Θ(ξ) is the unit step function [Θ(ξ) = 0(1) if ξ < (>)0]
Solution:
The retarded solution is

Ψ(x, y, z, t) =

∫
[f(x′, t′)]ret
|x− x′|

d3x′ (1)

Substuting the source function with the given delta functions we get

Ψ =

∫
δ(x′)δ(y′)δ(t− |x−x′|

c )

R
dx′dy′dz′

=

∞∫
−∞

δ(t−R
c )

R
dz′

Since we have cylindrical coordinate system we get

R = |x− x′| =
√
ρ2 + (z − z′)2 where x′ = y′ = 0

This integral can be done with substitution. Supposing u = z′ + z, we get dz′ = du and the limit stay
the same

Ψ(ρ, t) =

∞∫
−∞

δ(t−
√
ρ2 + u2/c)√

ρ2 + u2
du (2)

Now this integral is of the form

Ψ(a) =

∫
δ(f(x, a))

g(x)
dx
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making substitution of variable f(x) = β we get dβ = f ′(x)dx so that we get

Ψ(a) =

∫
δ(β)

g(x)

1

f ′(x)
dβ

It is clear that the delta function only picks up values of x for which β = f(x) = 0. So the delta
function reduces the integral to the sum of finite values for which β = f(x) = 0, let the solutions of
β = f(x) = 0 be αi, this makes,

Ψ(a) =
∑
i

1

g(αi)f ′(αi)

for this problem we have f(u) = t−
√

ρ2+u2

c whose zeros are

t−
√
ρ2 + α2

i

c
= 0 =⇒ αi = ±

√
c2t2 − ρ2 if ct > ρ

there are no roots if ct < ρ and the delta function is zero and the integral is identically zero. Also the
derivative at the root is

f ′(u) =
u

c
√
ρ2 + u2

=⇒ f ′(αi) = ±
√
c2t2 − ρ2

cct

Substituting this in the integral (2), knowing that there are two values of αi we get

Ψ(ρ, t) =

{
2c2t√
c2t2−ρ2

1
ct if ct ≥ ρ

0 if ct ≤ ρ

the two cases can be combined by using heaviside function

Ψ(x, y, t) =
2cΘ(ct− ρ)√

c2t2 − ρ2
=

2cΘ(ct−
√

x2 − y2)√
c2t2 − x2 − y2

This is the required form of the wave
□

(b) Show that a “sheet” source, equivalent to a point pulse source at the origin in one space dimension
produces a one dimensional wave proportional to

Ψ(x, t) = 2πcΘ(ct− |x|)

Solution:
For the sheet source we expect a plane propagation of the wave. The source function for the sheet
source at some particular time t′ = 0, let the x′ = 0 plane be the source, so we can write the source
function as

f(t′, x′) = δ(x′)δ(t′)

Using this source function to get the retarded time solution and substuting in (1) we get

Ψ(x, y, z, t) =

∞∫
−∞

δ(x′)δ(t′)ret
R

dx′dy′dz′

Again we get R =
√
(x− x′)2 + (y − y′)2 + (z − z′)2. Again similar to the previous rpoblem chaning

of variables with u = y − y′, v = z − z′ and recognizing that the delta function integral simply picks
up x′ = 0 we get

Ψ(x, y, z, t) =

∞∫
−∞

δ(t−
√
x2+u2+v2

c )
√
x2 + u2 + v2

dudv
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Since the integral has cylindrical symmetry when we have ρ =
√
u2 + v2 we can make cylindrical

variable substitution to get

Ψ(ρ, ϕ, z) =

∫
δt−

√
ρ2 + x2/c√

ρ2 + x2
ρdρdϕ

Due to cylindrical independence the phi integral is 2π and we are left with delta function integral
similar to previous problem

Ψ(x, t) =

∫
δ(t−

√
ρ2 + x2/c)√

ρ2 + x2
ρdρ

This again has a delta function inside the integral, and is non-zero only for the delta function equal to
zero, the zeros of the expression inside the delta function, only give non zero values and the integral
truns to a sum over these finite values of solution, the zeros of the delta are

t−
√

ρ2 + x2/c = 0 =⇒ ρ = ±
√

c2t2 − x2 if ct > x

Also supposing β = f(ρ) = t−
√

ρ2 + x2/c we get

dβ = f ′(ρ)dρ dβ =
2ρ

2c
√

ρ2 + x2
=⇒ ρdρ = c

√
ρ2 + x2dβ

Substuting these

Ψ(x, t) =

∫
δ(β)√
ρ2 + x2

c
√
ρ2 + x2dβ

Since there are two values of zeros of the funtion we have two terms in sum and we get

Ψ(x, t) = c+ c

By similar arguments as in the previous one we get non zero integral only if ct > x we can write this
using the Heaviside function

Ψ(x, t) = 2cΘ(ct− x)

This is the required function. □

2. (Jackson 6.4) A uniformly magnetized and conducting sphere of radius R and total magnetic moment
m = 4πMR3/3 rotates about its magnetization axis with angular speed ω . IN the steady state no current
flows in the conductor. The motion is non relativistic; the sphere has not excess charge on it.
(a) By considering Ohm’s law in the moving conductor, show that the motion induces and electric field

and a uniform volume charge density in the conductor ρ = mω/πc2R3

Solution:
The magnetic moment of sphere is given by m = MV where V = 2

3πR
3 is the volume of sphere.

Comparing it to the given magnetic moment we get that M = M ẑ. The magnetic flux density inside
the sphere is given by

B =
2

3
µ0M =

µ0m

2πR3
ẑ

By ohm’s law the current in the moving conductor is

J = σ(E + v ×B)

Since there is no current J = 0 which implies

E = −v ×B
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Since the sphere has angular frequency ω, the translational velocity at r is given by v = r×ω = ωr×ẑ
thus we get

E = r × ω ×B =
µ0m

2πR3
[ẑ(ẑ · r)− r(ẑ · ẑ)]

This simplifies to

E =
µ0mω

2πR3
(ẑ(ẑ · r)− r)

This is the projection of vector r onto the horizontal axis, which in cylindrical system is

Eρ = −µ0mωρ

2πR3

Now that we have the field we can apply gauss’ law to calculate the charge density

∇ ·E =
ρ

ϵ0

Sinc our field only has component along ρ we have

ρ = ϵ0
∂Eρ

∂ρ
= −µ0ωmρ

2πR3

This is the required volume charge density. □

(b) Because the sphere is electrically neutral, there is no monopole electric field outside. Use symmetry
arguments to shwo that the lowest possible electric multipolarity is quadrupole. Show that only
quadrupole field exists outside that the quadrupule moment tensor has non vanishing components
Q33 = −4mωR2/3c2, Q11 = Q22 = −Q33

2 .
Solution:
Since there is no charge inside the sphere the exterior can be described as the multipole expansion.
Since there is no charge, the monopole moment which is the moment of total charge is zero. The
electrostatic potential can be obtained as

Φ(ρ) = −
∫

Edl = −
∫

Eρdρ = Φ0 +
µ0mωρ2

4πR3

This can be simplified by using the cartesian coordinate formulation as

Φ(r, θ) = Φ0 +
µ0mω

4πR3
r2 sin2 θ.

Wrinting sin2 θ in terms of legendre polynomials we get

Φ(r, θ) = Φ0 +
µ0mω

6πR3
r2 [P0(cos θ)− p2(cos θ)]

this simlifies to

Φ(r, θ) =
(
Φ0 +

µ0mω

6πR3
r2
)
P0(cos θ)−

µ0mω

6πR3
r2P2(cos θ)

At the surface of the sphere r = R we get the potential as

Φ(r, θ) =
(
Φ0 +

µ0mω

6πR3
r2
)
P0(cos θ)−

µ0mω

6πR3
r2P2(cos θ)

Since the potential is azimuthally symmetric, we can write the external potential as a legendre poly-
nomial series

V (θ) =
∑
i

AlPl(cos θ)
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on the surface, and out side the surface the potential is

Φ(, θ) =
∑
l

Al

(
R

r

)l+1

Pl(cos θ)

Since there is no charge the monopole term for l = 0 vanishes so we get

Φ0 = −µ0mω

6πR

And the expression becomes.

Φ(r, θ) = −µ0mωR2

6πr3
P2(cos θ)

Now tath we hae te exterior potential can be converted to expression with spherical harmonics

Φ = −
√

4π

5

µ0mωR2

6π

Y20(θ, ϕ)

r2

The standard multipole expansion expression is

Φ =
1

4πϵ0

∞∑
l=−∞

l∑
m=−l

2π

2l + 1
qlm

Ylm(θ, ϕ)

rl+1

compariosion gives

q20 = −4πϵ0

√
5

4π

µ0mωR2

6π
= −

√
5

4π

2mωR3

3c2

The moment expression in cartesian coordinate system is given by

Q33 = 2

√
4π

5
q20 = −4mωR2

3c2
, Q11 = Q22 = −1

2
Q33

this is teh required expression. □

(c) By considering the radial electric fields inside and outside the sphere, show that the necessary surface
charge density σ(θ) is

σ(θ) =
1

4πR2
· 4mω

3c2
·
[
1− 5

2
P2(cos θ)

]
Solution:
the surface charge can be computed by using teh normal component as derivatives of potential. In
the spherical coordinates we get

Eout
r = −µ0mωR2

2πr4
P2(cos θ)

Ein
r = −µ0mωr

3πR3
[po(cos θ)− P2(cos θ)]

the surface charge is thus

σ = ϵ0
(
Eout

r − Ein
r

)∣∣
r=R

=
µ0ϵ0mω

3πR2

[
3

2
P2(cos θ)− (P0(cos θ)− P2(cos θ))

]
=

mω

3πc2R3

[
P0(cos θ)−

5

2
P2(cos θ)

]

This gives the required expression for teh surface charge density. □
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(d) The rotating sphere serves aas a unipolar induction devie if a stationary circuit is attached by a slip
ring to the pole and sliding contact to the equator. Show that hte line integral of the electric field
from the equator contat to the pole contact is E = µ0mω/4πR
Solution:
The line integral is

E =

pol∫
equator

Edl = Φequator − Φpol = Φ(θ = π/2)− Φ(θ = 0)

Substuting the value of theta in the expression for the potential we get

E = −µ0mω

6πR
[P2(0)− P2(1)] =

µ0mω

4πR

This gives the required expression for the integral.
□
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