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1. (Jackson 3.6) Two point charges q and −q are located on the z axis at z = a and z = −a respectively
(a) Find the electrostatic potential as an expansion in spherical harmonics and powers of r for both r > a

and r < a.
Solution:
Le the position vector of point charges +q and −q be r1(a, 0, φ) and r2(−a, π, φ) respectively. Any
point with position vector r will have potential given by

Φ =
q

4πε0

[
1

|r − r1|
− 1

|r − r2|

]
If the angle between two position vectors r and r′ is γ, a function of this form, with the help of cosine
law, can be written as

1

|r − r′|
=

1√
r2 + r′2 − 2rr′ cos γ

=


1

r′
√

1+
(

r
r′

)2
−2

(
r
r′

)
cos γ

if r′ ≥ r

1

r

√
1+

(
r′
r

)2
−2

(
r′
r

)
cos γ

if r′ < r

 =

∞∑
n=0

(
rn<
rn+1
>

)
Pn(cos γ)

Here, r> = max(r, r′) and r< = min(r, r′). Also the generating function expansion of legendre
polynomials has been used

∀ t < 1 :
1√

1 + t2 − 2tx
=

∞∑
n=0

tnPn(x)

By using the addition theorem for the legendre polynomials we can write

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Y m
l (θ1, φ1)

∗Y m
l (θ, φ)

So we can write the expression

1

|r − r1|
=

∞∑
l=0

rn

rn+1
1

4π

2l + 1

l∑
m=−l

Y m
l (θ1, φ1)

∗Y m
l (θ, φ)

Since we have |r1| = |r2|(= a), we can generalize r> = max(r, a) and r< = min(r, a). So the potnetial
expression becomes

Φ =
q

4πε0

∞∑
l=o

l∑
m=−l

4π

2l + 1

rl<
rl+1
>

{Y m
l (θ1, φ1)

∗Y m
l (θ, φ)− Y m

l (θ2, φ2)
∗Y m

l (θ, φ)}

=
q

4πε0

∞∑
l=o

l∑
m=−l

4π

2l + 1

rl<
rl+1
>

[
Y m
l (0, φ)∗ − Y m

l (π, φ)∗
]
Y m
l (θ, φ)
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For the given problem θ1 = 0, θ2 = π. But

∀m 6= 0 : Y m
l (0, φ) = 0 ∧ Y 0

l (0, φ) =

√
2l + 1

4π
Pl(1) ⇒ Y m

l (0, φ) =

√
2l + 1

4π
δm,0

∀m 6= 0 : Y m
l (π, φ) = 0 ∧ Y 0

l (π, φ) =

√
2l + 1

4π
Pl(−1) ⇒ Y m

l (π, φ) =

√
2l + 1

4π
(−1)lδm,0

Substuting these we get

Φ =
q

4πε0

∞∑
l=0

l∑
m=−l

√
4π

2l + 1

rl<
rl+1
>

[
(1− (−1)l)δm,0

]
Y m
l (θ, φ)

=
q

4πε0

∞∑
l=0

√
4π

2l + 1

rl<
rl+1
>

(1− (−1)l)Y 0
l (θ, φ)

Since Y 0
l (θ, φ) =

√
2l+1
4π Pl(cos θ) and ∀k ∈ N : (1− (−1)2k = 0) ∧ (1− (−1)2k+1 = 2), we get

∀k ∈ N : Φ =
2q

4πε0

∞∑
k=0

(
r2k+1
<

r2k+2
>

)
P2k+1(cos θ) =


q

2πε0

∞∑
k=0

(
r2k+1

a2k+2

)
P2k+1(cos θ) if r ≤ a

q
2πε0

∞∑
k=0

(
a2k+1

r2k+2

)
P2k+1(cos θ) if r > a

This is the required expression for teh potential due to this dipole. �

(b) Keeping the product qa = p/2 constant, take the limit of a → 0 and find the potential for r 6= 0 . This
is by definition a dipole along the z axis and its potential.
Solution:
In the limit a → 0 we have r > a so we get

Φ = lim
a→0

q

2πε0

∞∑
k=0

(
a2k+1

r2k+2

)
P2k+1(cos θ)

= lim
a→0

qa

2πε0

(
1

r2
P1(cos θ) +

a2

r3
P3(cos θ) + . . .

)
=

p

4πε0

cos θ

r2

This is the required expression for potential due to a dipole. �

(c) suppose now that the dipole in (1b) is surrounded by a grounded spherical shell of radius b concentric
with the origin. By linear superposition find the potential everywhere inside the shell.
Solution:
Since the grounded sphere attains charge due to induction of the dipole inside it. It creates its own
electric potential inside the sphere which follows Laplace’s equation.The general solution to Laplace’s
equation in spherical coordinate system is

u(r, θ, φ) = [Arl +Br−(l+1)][C cosmφ+D sinmφ][EPm
l (cos θ) + FQm

l (cos θ)]

Since there is azimuthal symmetry the value of m = 0. The potential is finite at both the poles, but
the associated Legendre function of second kind Qm

l (x) diverges at x = ±1, which corresponds to
poles, so we require F = 0. Also since the potential is finite at r = 0 we require B = 0 Absorbing
constant E into Ak, the general solution reduces to

u(r, θ, φ) =

∞∑
l=0

Alr
lPl(cos θ) (1)
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Here the function P 0
l (x) = Pl(x) is the Legendre polynomial. By superposition principle the totential

inside the sphere of radius b must be potential due to the induced charge in sphere and the potential
by dipole. So potential everywhere inside the sphere is

Φ′ = Φ+

∞∑
l=0

Alr
lPl(cos θ) =

p

4πε0

P1(cos θ)

r2
+

∞∑
l=0

ArlPl(cos θ)

But we require Φ′ = 0 at r = b.
∞∑
l=0

Alb
lPl(cos θ) = − q

4πε0

P1(cos θ)

b2

Since {Pl(x); l ∈ N} form a set of orthogonal functions the coefficient of Pl(x) on either side of equation
must be equal for this equation to be identity, thus we get

A1b = − q

4πε0

1

b2
=⇒ A1 = − q

4πε0

1

b3
; Alb

l = 0, =⇒ Al = 0; ∀ l 6= 1

Using the value of Al in (1) we get

Φ′ =
p

4πε0

cos θ

r2
− q

4πε0b3
r cos θ =

1

4πε0

[ p
r2

− r

b3

]
cos θ

This is the required potential everywhere inside the sphere �

2. (Jackson 4.1) Try to obtain results for the non vanishing moments valid or all l, but in each case find
the first two sets of non vanishing moments at the very least. Calculate the multipole moments qlm of the
charge distributions shown
(a)

Solution:
The charge density can be written as

ρ(x) =
q

r2
δ(r − a)δ(cos θ)

[
δ(φ) + δ

(
φ+

π

2

)
− δ(φ− π)δ

(
φ+

3π

2

)]
Since all the charges are in plane θ = π

2 so cos θ = 0. The multipole moments are given by

qlm =

∫
rlY m

l (θ, φ)ρ(x)d3x

=

√
2l + 1

4π

(l −m)!

(l +m)!
qalPm

l (0)
[
1 + e−imπ/2 − e−imπ − e−im3π/2

]
Sicne Pm

l (0) = 0 for all even m we can write m = 2k + 1; k ∈ N

q2k+1
l = 2qal

[
1− i(−1)k

]√2l + 1

4π

(l − (2k + 1))!

(l + (2k + 1))!
P 2k+1
l (0)

= 2qal
[
1− i(−1)k

]
Y 2k+1
l

(π
2
, 0
)

This vanishes for all even l thus the values for odd l and m are

q1,1 = −q∗1,−1 = −2qa(1− i)

√
3

8π

q3,3 = −q∗3,−3 = 2qa3(1 + i)

√
35

4π

q3,1 = −q∗3,−1 = 2qa3(1− i)
1

4

√
21

4π

Theseare the first few non vanishing moments. �
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(b)
Solution:
The charge ensity is

ρ(x) =
q

2πr2
[δ(r − a)δ(1− cos θ) + δ(r − a)δ(1 + cos θ)− δ(r)]

The multipole moments are given by

qlm =

∫
rlY m

l (θ, φ)ρ(x)d3x

= qalPm
l (0) [Y m

l (0, 0)∗ + Y m
l (π, 0)∗]

for l > 0 and q00 = 0. By azimuthal symmetry, only the m = 0 moments are non vanishing. Thus we
get

ql0 = qal
√

2l + 1

4π

[
Pl(1) + P( − 1)

]
= qal

[
1 + (−1)l

]√2l + 1

4π
l > 0

So, this leads to

q2,0 =

√
5

π
qa2; q2,m 6=0 = 0

q4,0 =

√
9

π
qa4; q4,m 6=0 = 0

These are the moments. �

(c) For the charge distribution of the second set b write down the multipole expansion for the potential.
Keeping only the lowest-order term in the expansion, plot the potential in the x0y plane as a function
of distance from the origin for the distances grater than a.
Solution:
The expansion of the potential in terms of multipole coefficients is

Φ =
1

4πε0

∞∑
l=0

l∑
m=−l

4π

2l + 1
qlm

Ylm(θ, φ)

rl+1

Since we only have non-zero coefficients for m = 0 and l even we have

Φ =
1

4πε0

∑
l=2,2,4

4π

2l + 1
ql0

Y 0
l (θ, φ)

rl+1

=
q

4πε0

∑
l=2,4...

4π

2l + 1
qal
√

2l + 1

π

√
2l + 1

π

Pl(cos θ)

rl+1

=
q

4πε0
2

al

rl + 1
Pl(cos θ)

The lowest order term is l = 2. And in the x− y plane θ = π
2 so we get

Φ = − q

4πε0a

(a
r

)3
This is the inverse cubic function whose graph is shown in Fig. (1) looks like. �
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Figure 1: First term of multipole expansion.

(d) Calculate directly from Coloumb’s law the exact potential for b in the x−y plane. Plot it as a function
of distance and compare withe the result found in part c.
Solution:
For the charges given we have in the cartesian coordinate system, in x− y plane, if the distance from
the origin to any point on the plane is r we get

Φ =
q

4πε0

(
1√

r2 + a2
− 1

r
+

1√
r2 + a2

)
Plotting this as a function r we get the plot in Fig. (2) �
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Figure 2: Exact solution

3. (Jackson 4.9) A point charge q is located in free space a distance d from the center of a dielectric sphere
of radius a ( a < d ) and dielectric constant ε/ε0

(a) Find the potential at all points in space as an expansion in spherical harmonics.
Solution:
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The charge at d inuces charge in the sphere. The induced charge produces the field inside the sphere.
Again, using the general solution of Lapalace’s equation in spherical system with azimuthal symetry
we get

Φin =
q

4πε

∞∑
l=0

Alr
lPl(cos θ) (2)

We can chose the coordinate system such that the Z axis of our coordinate system passes through the
charge and the center of sphere. WIh this. Outside the sphere the potential due to the chage is given
by

Φout =
1

4πε0

q

|r − r′|
+

q

4πε0

∞∑
l=0

Bl
al

rl+1
Pl(cos θ) (3)

=
q

4πε0

∞∑
l=0

[
rl<
rl+1
>

+Bl

(
al

rl+1

)]
Pl(cos θ) (4)

The component of electri field parallel to the surface of the sphere is

Ein
θ = − 1

r

∂Φin

∂θ

∣∣∣∣
r=a

=
q

4πε0

∞∑
l=0

[
Al

rl

al+1
P ′
l (cos θ) sin θ

]
r=a

=
q

4πε0

∞∑
l=0

Al
1

a
P ′
l (cos θ) sin θ (5)

Similarly the component outside the sphere is

Eout
θ =

q

4πε0

∞∑
l=0

[
rl<
rl+1
>

+Bl

(
al

rl+1

)]
P ′
l (cos θ) sin θ

∣∣∣∣∣
r=a

=
q

4πε0

∞∑
l=0

[
al

dl+1
+

Bl

a

]
P ′
l (cos θ) sin θ (6)

Equating (5) and (6) we get

q

4πε

Al

a
=

q

4πε0

[
al

dl+1
+

Bl

a

]
=⇒ Al =

ε

ε0

[
al+1

dl+1
+Bl

]
(7)

Ein
r = −ε

∂Φin

∂r

∣∣∣∣
r=a

=
q

4π

∞∑
l=0

[
Al

lrl−1

al+1

]
Pl(cos θ)

∣∣∣∣∣
r=a

=
q

4π

∞∑
l=0

[
Al

l

a2

]
Pl(cos θ) (8)

Similarly for the radial component of field outsie the sphere is

Eout
r = −ε0

∂Φout

∂r

∣∣∣∣
r=a

=
q

4π

∞∑
l=0

[
lal−1

dl+1
−Bl

(l + 1)al+1

rl+2

]
Pl(cos θ)

∣∣∣∣∣
r=a

=
q

4π

[
Al

lal−1

dl+1
−Bl

(l + 1)

a2

]
Pl(cos θ)

(9)

Equating (8) and (9) we get

q

4π

All

a2
=

q

4π

[
lal−1

dl+1
−Bl

l + 1

a2

]
= Al =⇒ al+1

dl+1
−Bl

l + 1

l
(10)

Solving two linear equations in Al and Bl from (10) and (7) we get

Bl =

(
ε0
ε − 1

)
l

l + (l + 1) ε0ε

al+1

dl+1
(11)

Al =
2l + 1

l + (l + 1) ε0ε

al+1

dl+1
(12)

Substuting the coefficient in (11) an (3) we get

Φin =
q

4πε

∞∑
l=0

2l + 1

l + (l + 1) ε0ε

rl

dl+1
Pl(cos θ)
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And similarly

Φout =
q

4πε0

∞∑
l=0

[
rl

dl+1
+

( ε0ε − 1)l

l + (1 + l) ε
ε0

a2l+1

(rd)l+1

]
Pl(cos θ)

These are the expression for the electri field inside and outside the sphere. �

(b) Calculate the rectangular components of the electric field near the center of the sphere.
Solution:
Inside the sphere, the first few terms are

Φin =
q

4πε0

[
1
ε0
ε

P0(cos θ) +
3

1 + 2 ε0
ε

r

d
P1(cos θ) +

5

2 + 3 ε0
ε

r2

d2
P2(cos θ) +O(r3)

]
The radial radial component of the field is

Er = −∂Φin

∂r
r̂ = − q

4πε

[
0 +

3

1 + 2 ε0
ε

1

d
P1(cos θ) +O(r)

]
r̂ = − q

4πεd

[
3 cos θ

1 + 2 ε0
ε

+O(r)

]
r̂

In the limit r → 0 we get

Er = − q

4πεd

[
3 cos θ

1 + e ε0
ε

]
r̂

Similarly the tangential (θ) component of field is

Eθ = −1

r

∂Φin

∂θ
θ̂ =

−1

r

q

4πε

[
0 +

−3 sin θ

1 + e ε0
ε

r

d
+O(r)

]
θ̂ =

q

4πεd

[
3 sin θ

1 + 2 ε0
ε

+O(r)

]
θ̂

In the limit r → 0 we get

Eθ =
q

4πεd

[
3 sin θ

1 + 2 ε0
ε

]
θ̂

Since the φ component of the field is 0 as the potential is independent of φ we get

E =
q

4πεd

3

1 + 2 ε0
ε

[
− cos θr̂ + sin θθ̂

]
=

q

4πεd

3

1 + 2 ε0
ε

k̂

Where k̂ is the unit vector along z−axis. �

(c) Verify that, in this limit ε/ε0 → ∞, hour result is the same as that for conducting sphere
Solution:
In the limit ε/ε0 → ∞ we have

Φin =
q

4πε0d

and

Φout =
q

4πε0

[ ∞∑
l=0

rl<
rl+1
>

−
∞∑
l=1

a2l+1

(rd)l+1

]
Pl(cos θ)

We can invoke the spherical harmonics expansion in reerse and write the expression as

q

4πε0

[
q/d

r
+

1

|r − r′|
− a

|dr − a2r̂|

]
Whih is indeed the potential of a sphere outside the sphere �
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