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1. Show that
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Solution:
Let the angle between the vectors r′ and r be γ. Also let |r− r′| = r1. Then by cosine law wwe have

r21 = r′2 − 2r′r cos γ + r2;

Which can be rearranged to get
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From the spherical harmonics addition theorem we can write

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Y m
l (θ, ϕ)∗Y m
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Substuting this in the above expression we get
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Clearly this series converses only if r > r′ if instead r′ > r in the the expression can be rewritten as
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Using the spherical harmonics addition relation leads to
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These are the required expressions ■

1



2. By choosing a suitable form for h in the generating function

G(z, h) = exp

[
z

2

(
h− 1

h

)]
=

∞∑
n=−∞

Jn(z)h
n

show that the integral representation of the bessel functions of the first kind are given, for integral m by

J2m(z) =
(−1)m

2π

∫ 2π

0

cos(z cos θ) cos(2mθ)dθ; m ≥ 1,

J2m+1(z) =
(−1)m

2π

∫ 2π

0

sin(z cos θ) cos((2m+ 1)θ)dθ m ≥ 0.

Solution:
Let h = ieiθ. With this choice of h we get h−1/h = ieiθ+ie−iθ = 2i cos θ. This siimplifies the generating
function integral to

eiz cos θ =
∞∑

n=−∞
Jn(z)

(
ieiθ
)n

cos(z cos θ) + i sin(z cos θ) =
∞∑

n=−∞
Jn(z)i

n(cos θ + i sin θ)
n

=
∞∑

n=−∞
inJn(z) cosnθ + in+1Jn(z) sinnθ

Since in is real for even n and in+1 is real for odd n. The real part of the expression on RHS is

∞∑
m=−∞

J2mi2m cos(2mθ) + J2m+1i
2m+2 sin((2m+ 1)θ) =

∞∑
m=−∞

J2m(−1)m cos(2mθ) + J2m+1(−1)m+1 sin((2m+ 1)θ)

Thus equating real part on both sides gives

cos(z cos θ) =
∞∑

m=−∞
J2m(−1)m cos(2mθ) + J2m+1(−1)m+1 sin((2m+ 1)θ)

Since we know that the set {sinnθ}n and {cosnθ}n form orthogonal set of functions we can find the
expression J2m by usual “Fourier Trick” as

2π∫
0

cos(z cos θ) cos(2rθ)dθ =

∫ 2π

0

( ∞∑
m=−∞

J2m(−1)m cos(2rθ) + J2m+1(−1)m+1 sin((2m+ 1)θ)

)
cos 2rθdθ

=
∞∑

m=−∞

 2π∫
0

J2m(−1)m cos(2mθ) cos 2rθdθ +

2π∫
0

J2m+1(−1)m+1 sin((2m+ 1)θ) cos 2rθdθ


=

∞∑
m=−∞

(−1)mJ2m2πδmr + 0

= (−1)rJ2r(z)2π

Rearraning the expression gives since 1
(−1)r = (−1)r

J2r(z) =
(−1)r

2π

2π∫
0

cos(z cos θ) cos(2rθ)dθ
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Similarly equating the imaginary part gives

sin(z cos θ) =

∞∑
m=−∞

J2m(−1)m sin(2mθ) + J2m+1(−1)m+1 cos((2m+ 1)θ)

The usual orthogonality gives

J2r+1(z) =
(−1)r

2π

2π∫
0

sin(z cos θ) cos((2r + 1)θ)dθ

These concludes the rquirement. ■

3. Find the potential distribution in a hollow conducting cylinder of radius R and length l. The two ends
are closed by conducting plates. One end of the plate and the cylindrical wall are held at potential
Φ = 0. The other end plate is insulated form the ylindre and held ate potential Φ = ϕ0

Solution:
Since there is no charge source inside the cylinder, the potential in a chargeless region follows the lapalces
equation ∇2Φ = 0. Using the usual culindrical coordinate system for the problem the general solution
of the Laplaces equation in cylindrical solution is given by

Φ(ρ, ϕ, z) = [AJm(kρ) +BYm(kρ)][C cosmϕ+D sinmϕ]
[
Ee−kz + Fekz

]
Since the potential is finite at ρ = 0 at the axis of cylinder, the coefficient B = 0 because Ym(0) = −∞.
Since the potential is finite in that region that has to be the case. Also since there is azimuthal symmetry
the value of m = 0. The general solution then becomes

Φ(ρ, ϕ, z) = AJ0(kρ)
[
Ee−kz + Fe−kz

]
Since the potential is 0 at z = 0 in the bottom end of cylinder. E +F = 0; E = −F . Absorbing 2F
into A we get

Φ(ρ, ϕ, z) = AJ0(kρ) sinh(kz)

Also at the wall of the cylinder ρ = a the potential is zero so

0 = Φ(a, ϕ, z) = AJ0(ka) sinh(kz)

The only way this expression can be zero for all z is if J0(ka) = 0. Which means ka should be the zero
of bessel function. Since there are infinite zeros of bessel functions let them be denoted by {αi}∞i=0. This
means ka = αi;⇒ ki =

αi

a So the general solution becomes

Φ(ρ, ϕ, z) =
∞∑
i=0

AiJ0

(αi

a
ρ
)
sinh

(αi

a
z
)

The coefficient Ai is given by

Ai =
2

J2
1 (αi) sinh

(
αi

a l
) ∫ a

0

ρΦ(ρ, ϕ, l)J0

(αi

a
ρ
)
dρ

Since Φ(ρ, ϕ, l) = ϕ0 this integral is becomes

Ai =
2ϕ0

J2
1 (αi) sinh

(
αi

a l
) ∫ a

0

ρJ0

(αi

a
ρ
)
dρ

=
2ϕ0

J2
1 (αi) sinh

(
αi)
a l
)[J1(αi)

αi

]

=
2ϕ0

αiJ1(αi) sinh
(
αi

a l
)
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Substuting this back gives the required general solution

Φ(ρ, ϕ, z) =
∞∑
i=0

2ϕ0

αiJ1(αi) sinh
(
αi

a l
)J0(αi

a
ρ
)
sinh

(αi

a
z
)

This gives the potential everywhere inside the cylinder. ■

4. Show from its definition, that the Bessel function of second kind, and of integer order ν can be written
as

Yν(z) =
1

π

[
∂Jµ(z)

∂µ
− (−1)ν

∂J−µ(z)

∂µ

]
µ=ν

Using the explicit series expression for Jµ(z), show that ∂Jµ(z)/∂µ can be written as

Jν(z) ln
(z
2

)
+ g(ν, z)

and deduce that Yν(z) can be expressed as

Yν(z) =
2

π
Jν(z) ln

(z
2

)
+ h(ν, z)

Where h(ν, z) lik g(ν, z), is a power series in z.
Solution:
The definition of the bessel function of second kind is

Yν(z) = lim
µ→ν

cosµπJµ(z) + J−µ(z)

sinµπ

Using L Hopitals rule to evaluate this limit we get

Yν(z) = lim
µ→µ

−π sinµπJµ(z) + cosµπJ ′
µ(z)− (−1)µJ ′

−µ(z)

cosµπ

Since at integer values of ν the value cos νπ = 1 and sin νπ = 0 we get

Yν(z) =
1

π

[
∂Jµ(z)

∂µ
− (−1)ν

∂J−µ(z)

∂µ

]
µ=ν

For non-integer ν the power series representation of the Bessel function is

Jµ(z) =

∞∑
r=0

(−1)r

r!Γ(r + µ+ 1)

(z
2

)µ+2r

Taking derivative with respect to µ we get

∂Jµ(z)

∂µ
=

∞∑
r=0

(−1)r

r!Γ(r + µ+ 1)

(z
2

)µ+2r

ln
(z
2

)
+

∞∑
r=0

− (−1)rΓ′(r + µ+ 1)

r!Γ2(r + µ+ 1)

(z
2

)µ+2r

= ln
(z
2

) ∞∑
r=0

(−1)r

r!Γ(r + µ+ 1)

(z
2

)µ+2r

︸ ︷︷ ︸
Jµ(z)

+
∞∑
r=0

− (−1)rΓ′(r + µ+ 1)

r!Γ2(r + µ+ 1)

(z
2

)µ+2r

︸ ︷︷ ︸
g(µ,z)

= ln
(z
2

)
Jµ(z) + g(µ, z)
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Since J−µ(z) = (−1)µJµ(z). This expression can be reused to calculate the derivative of J−µ. Multiplying
both sides of this expression by (−1)µ we get

∂J−µ(z)

∂µ
= (−1)µ ln

(z
2

)
Jµ(z) + (−1)µg(µ, z)

Substuting this back in the expression for the bessel function of second kind we get

Yν(z) =
1

π

[
ln
(z
2

)
Jµ(z) + g(µ, z) + (−1)µ(−1)µ ln

(z
2

)
Jµ(z) + (−1)µg(µ, z)

]
µ=ν

=
1

π

[
ln
(z
2

)
Jν(z) + ln

(z
2

)
Jν(z)

]
+

1

π
[g(ν, z) + (−1)νg(ν, z)]︸ ︷︷ ︸

h(ν,z)

=
2

π
ln
(z
2

)
Jν(z) + h(ν, z)

This gives the requried expression for Bessel function of second kind for integer order. ■
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