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1. Show that
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Solution:
Let the angle between the vectors r’ and r be v. Also let [r — r/| = 1. Then by cosine law wwe have

ri =71"? — 2r'r cosy +r?;
Which can be rearranged to get
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From the spherical harmonics addition theorem we can write
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Substuting this in the above expression we get
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Clearly this series converses only if > 7/ if instead 7’ > r in the the expression can be rewritten as
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Using the spherical harmonics addition relation leads to
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These are the required expressions H



2. By choosing a suitable form for A in the generating function
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show that the integral representation of the bessel functions of the first kind are given, for integral m by
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Joam+1(2) = o /0 sin(z cos 0) cos((2m + 1)0)do m > 0.

Solution:
Let h = ie'®. With this choice of h we get h—1/h = e +ie~%® = 2i cos§. This siimplifies the generating
function integral to

eizcos‘0: Z Jn(z)(ie“’)n

cos(z cosf) + isin(z cosf) = Z Jn(2)i"(cos O + isinf)"
= Z i"J,(2) cosnf + i" LT, (2) sinn

Since " is real for even n and i"*! is real for odd n. The real part of the expression on RHS is
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Thus equating real part on both sides gives
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Since we know that the set {sinnf}, and {cosnf}, form orthogonal set of functions we can find the
expression Ja,,, by usual “Fourier Trick” as
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Rearraning the expression gives since (_%)T = (=1)"
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Similarly equating the imaginary part gives
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The usual orthogonality gives

Jart1(z) = (_271T)T /sin(z cos @) cos((2r + 1)0)do
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These concludes the rquirement.

. Find the potential distribution in a hollow conducting cylinder of radius R and length /. The two ends
are closed by conducting plates. One end of the plate and the cylindrical wall are held at potential
® = 0. The other end plate is insulated form the ylindre and held ate potential ® = ¢,

Solution:

Since there is no charge source inside the cylinder, the potential in a chargeless region follows the lapalces
equation V2® = 0. Using the usual culindrical coordinate system for the problem the general solution
of the Laplaces equation in cylindrical solution is given by

D(p, p,2) = [Adpm(kp) + BY,,(kp)][C cosme + D sinme][Ee™** + FeF?]

Since the potential is finite at p = 0 at the axis of cylinder, the coefficient B = 0 because Y;,,(0) = —o0.
Since the potential is finite in that region that has to be the case. Also since there is azimuthal symmetry
the value of m = 0. The general solution then becomes

®(p, p,2) = Ado(kp)[Be ** + Fe *7]

Since the potential is 0 at z = 0 in the bottom end of cylinder. E+ F = 0; E = —F. Absorbing 2F
into A we get

D(p, 6, 2) = Ado(kp) sinh(k)
Also at the wall of the cylinder p = a the potential is zero so
= ®(a, ¢, z) = AJy(ka) sinh(kz)

The only way this expression can be zero for all z is if Jy(ka) = 0. Which means ka should be the zero
of bessel function. Since there are infinite zeros of bessel functions let them be denoted by {e;};~,. This
means ka = a;; = k; = ¢+ So the general solution becomes

D(p, ¢, 2) ZA Jo( )smh(a )

The coefficient A; is given by
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Since ®(p, ¢,1) = ¢ this integral is becomes
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Substuting this back gives the required general solution
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This gives the potential everywhere inside the cylinder. B

. Show from its definition, that the Bessel function of second kind, and of integer order v can be written
as

Y, (z) =
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Using the explicit series expression for J,(z), show that 0J,(z)/0u can be written as

(@) m(3) +g02)

and deduce that Y, (z) can be expressed as
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Where h(v, z) lik g(v, z), is a power series in z.

Solution:

The definition of the bessel function of second kind is

Yo (2) = lim S5HTIu(2) + J-u(z)
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Using L Hopitals rule to evaluate this limit we get
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Since at integer values of v the value cosvm = 1 and sinvm = 0 we get
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For non-integer v the power series representation of the Bessel function is
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Taking derivative with respect to u we get
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Since J_,,(z) = (=1)*J,.(z). This expression can be reused to calculate the derivative of J_,. Multiplying
both sides of this expression by (—1)* we get
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Substuting this back in the expression for the bessel function of second kind we get
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This gives the requried expression for Bessel function of second kind for integer order. Il



