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1. A slice of biological material of thickness L is placed into a solution of a radioactive isotope of constant
concentration C0, at time t = 0. For a later time t find the concentration of radioactive ions at a depth
x inside one of its surfaces if the diffusion constant is κ.
Solution:
The diffusion equation with diffusion constant κ is

∂2u

∂x2
=

1

κ

∂u

∂t

Using the separation of variable technique for the solution the solution can be written as u(x, t) =
X(x)T (t) where X and T are pure functions of x and t respectively. Substituting this solution in the
solution we get

X ′′

X
=

1

κ

T ′

T
= −λ2

The constant is chosen to be a negative number so that the exponential solution is finite at infinite time.
The time part of solution is

T ′

T
= −κλ2; ⇒

∫
dT

T
=

∫
−κλ2dt; ⇒ lnT = −κλ2t+K; ⇒ T (t) = De−κλ2t

For the other part X′′

X = −κλ2 has the solution of the form

A sin

(
λ√
κ
x

)
+B cos

(
λ√
κ
x

)
The general solution then becomes

u(x, t) =

[
A sin

(
λ√
κ
x

)
+B cos

(
λ√
κ
x

)]
e−λ2κt

After sufficient time has passed the concentration throughout the slab should be the concentration of
isotopes around it. But the above solution goes to 0 at t = ∞. Since adding a constant to the above
solution is still the solution to the diffusion equation. We can add a constant to make it satisfy this
condition.

Since the concentration is constant at all times on either side of the slab, u(0, t) = u(L, t) = C0 and so
X(0) = X(L) = 0. So

X(0) = Be−λ2κt = 0; ⇒ B = 0

X(L) = A sin

(
λ√
κ
L

)
= 0; ⇒ λ√

κ
L = nπ; ⇒ λ =

nπ
√
κ

L
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Using these two facts we get our general solution to be

u(x, t) = C0 +
∞∑

n=1

An sin
(nπ
L

x
)
e−

n2π2κ
L2 t

At t = 0 the concentration in the slab must be 0. So u(x, 0) = 0

0 = u(x, 0) = C0 +
∞∑

n=1

An sin
(nπ
L

x
)
; ⇒ −C0 =

∞∑
n=1

An sin
(nπ
L

x
)

Again the coefficients An can be calculated by using the fact that {sin(nx)}n form an orthogonal set of
function for integer set of n. Integrating the above expression by multiplying by sin

(
mπ
L x

)
on both sides

gives ∫ L

0

−C0 sin
(mπ

L
x
)
dx =

∫ L

0

∑
n

An sin
(nπ
L

x
)
sin

(mπ

L
x
)
dx

=
∑
n

An
1

L
δmn =

Am

L

⇒ Am = L

∫ L

0

−C0 sin
(mπ

L
x
)
dx = −LC0

{
2

mπ

1 + (−1)m

L

}
Using this the general solution becomes

u(x, t) = C0 −
2C0

π

∑
m

1 + (−1)m

m
sin

(mπ

L
x
)
e−

m2π2κt
L2

This gives the concentration of radioactive isotope inside the slab at all times. ■

2. Determine the electrostatic potential in an infinite cyinder split lengthwise in four parts and charged as
shown.
Solution:
Because the sides of cylindrical are conducting the potential is constant for u(a, ϕ, z) where a is the
radius of cylinder. It follows that for all z, u(ρ, ϕ) is the same. So the potential satisfies plane polar
form of laplaces equation which has the general solution

u(ρ, ϕ) = (C0 ln ρ+D0)
∑
n

(An cosnϕ+Bn sinnϕ)(Cnρ
n +Dnρ

−n)

Since we expect finite solution at ρ = 0, Dn = 0 otherwise it ρ−n = ∞ which won’t satisfy boundary
condition. By similar arguments Cn = 0 Also since at ρ = a the solution is an odd function which causes
D0 = 0 and An = 0. The general solution that is left is

u(ρ, ϕ) =
∑
n

Bnρ
n sinnϕ

Again the coefficients Bn can be calculated by using the fact that {sinnϕ}n form an orthogonal set of
function for integer set of n. Integrating the above expression by multiplying by sinmϕ on both sides
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gives ∫ 2π

0

u(a, ϕ) sinmϕdϕ =

∫ 2π

0

∑
n

Ana
n sinnϕ sinmϕdϕ

=
∑
n

Ana
n

∫ 2π

0

sinnϕ sinmϕdϕ

=
∑
n

Ana
n 2π

2
δmn = Amamπ

⇒ Am =
1

πam

∫ 2π

0

u(a, ϕ) sinmϕdϕ

Since in the given problem u(a, ϕ) has different values for different ϕ we get

Am =
1

πam


π/2∫
0

V sinmϕdϕ−
π∫

π/2

V sinmϕdϕ+

−π/2∫
−π

V sinmϕdϕ−
2π∫

−π/2

V sinmϕdϕ


=

V

πam

{
− 1

m
cos

(πm
2

)
+

1

m
− (−1)

m

m
+

1

m
cos

(πm
2

) (−1)
m

m
− 1

m
cos

(πm
2

) 1

m
cos

(πm
2

)
− 1

m

}
=

V

πam

{
2 (−1)

m

m
− 4

m
cos

(πm
2

)
+

2

m

}
=

V

πam

{
1

m

(
− (−1)

m
2 ((−1)

m
+ 1)− (−1)

m
+ 1

)}
So the final solution becomes

u(ρ, ϕ) =
V

mπ

{
1− (−1)

m
2 ((−1)

m
)− (−1)

m
+ 1

}(ρ
a

)m

sin(mϕ)

This gives the potential everywhere inside the cylinder. ■

3. A heat-conducting cylindrical rod of length L is thermally isnulated over its lateral surface and its ends
are kept at zero temperature. the initial temperature of the rod is u(x) = u0. using the diffusion equation

∂u

∂t
= a2

∂2u

∂x2

and the boundary conditions u(0, t) = u(L, t) = 0 and the initial condition u(x, 0) = u0, obtain the
solution u(x, t) of the above equation.
Solution:
The general solution to the diffusion equation is

u(x, t) = (A sin(λx) +B cos(λx))e−λ2a2t

Given initial condition u(0, t) = 0

u(0, t) = e−λ2a2t(B cos(λx)) = 0

Since function has to be 0 at all times the only way this can happen for all t is B = 0 Also the other
boundary condition is u(L, t) = 0 gives

u(L, t) = e−λ2a2tA sin(λL) = 0
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Since A = 0 will give us the trivial solution 0 the only way this function can go to zero at all time is
sin(λL) = 0 which implies

sin(λL) = 0; ⇒ λL = nπ; ⇒ λ =
nπ

L
; (n ≥ 1)

Since the solution can be linear combination of all n so the solution is

u(x, t) =
∞∑

n=1

Ane
−λ2a2t sin

(nπ
L

x
)

But since the initial condition is that the temperature of the rod is u0 to begin with. The above solution
clearly goes to zero at t = 0 and x = 0. Adding a constant to a solution of differential equation is still
a valid solution, to satisfy this condition we can add a constant u0. The valid general solution then
becomes

u(x, t) = u0 +

∞∑
n=1

Ane
−λ2a2t sin

(nπ
λ

x
)

At t = 0 the the solution reduces to

u(x, 0) = u0 +
∞∑

n=1

An sin
(nπ
L

x
)
; ⇒

∞∑
n=1

An sin
(nπ
L

x
)
= −u0

Sine sin(nx) forms an orthogonal set of function for integer set of n. We can find An by integrating
above expression multiplied with sinmx∫ l

0

−u0 sin
(mπ

L
x
)
dx =

∫ l

0

∑
n

An sin
(nπ
L

x
)
sin

(mπ

L

)
dx

=
∑
n

An

∫ l

0

sin
(nπ
L

)
sin

(mπ

L
x
)
dx

=
∑
n

An
l

2
δnm =

l

2
Am

⇒ Am = −2u0

l

∫ l

0

sin
(mπ

L
x
)
dx = −2u0

l

(
l
1− (−1)m

m

)
Using this in the solution we get the final solution as

u(x, t) = u0 − 2u0

∞∑
m=1

(
1− (−1)m

m

)
sin

(mπ

L

)
e−λ2a2t

This gives the temperature as a function of position and time in the given cylindrical body. ■

4. Consider the semi-infinite heat conducting medium defined by the region x ≥ 0, and arbitrary y and z.
Let it be initially at at 0 temperature and let its surface x = 0, have prescribed variation of temperature
u(0, t) = f(t) for (t ≥ 0). Show that the solution of the above diffusion equation can be written as

u(x, t) =
x

2a
√
π

∫ t

0

e
− x2

4a2(t−τ)

(t− τ)3/2
f(τ)dτ
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Solution:
Since the temperature conduction of a material satisfies the diffusion equation, the diffusion equation
can be written as.

a2
∂2u

∂x2
=

∂u

∂t

Since the parameters of this problems are t → {0,∞} and x → {0,∞}, we can take the laplace transform
of the equation with respect to the variable t which results in

∞∫
0

a2
∂2

∂x2
u(x, t)e−stdt =

∞∫
0

∂

∂t
u(x, t)e−stdt

d2

dx2

∞∫
0

u(x, t)e−stdt =
1

a2

∞∫
0

∂

∂t
u(x, t)e−stdt

Assuming u(x, t) = g(t), the RHS of above expression is the laplace transform of derivative of g(t) which
is sG(t)− g(0) which can be written as

d2

dx2
U(x, s) =

1

a2
(sU(x, s)− u(x, 0))

The term u(x, 0) is the initial temperature of the material body under construction, since the body is
initially at 0 temperature u(x, 0) = 0, using this and rearranging gives

d2

dx2
U(x, s)− s

a2
U(x, s) = 0

This is a very well known second order Ordinary Differential equation whose solution is of the form

U(x, s) = Ae−x
√
s/a +Bex

√
s/a

But since the material body is infinitely long in x ≥ 0 the solution is finite at x = ∞ which implies that
B = 0. Also at the near end of the material x = 0 the temperature u(0, t) = f(t) is given. The laplace
transform of which is U(0, s) = F (s). So

U(0, s) = Ae0; ⇒ A = U(0, s) = F (s)

This reduces the solution in the form

U(x, s) = F (s)e−x
√
s/a

At this point the solution u(x, t) is the inverse laplace transform of U(x, s). If the expression is taken as
product of F (s) and e−x

√
s/a the solution is the convolution of inverses of these.

Looking at the result we expect, the inverse laplace transfrom must tbe

L−1
{
e−x

√
s/a

}
=

xe−
x2

4a2t

2
√
πat

3
2

I checked this in sympy and got the following

So the inverse laplace transform of U(x, s) is

u(x, t) = L−1(F (s)) ∗ L−1
{
e−x

√
s/a

}
=

∞∫
0

x

2
√
πa

e
− x2

4a2(t−τ)

(t− τ)3/2
f(τ)dτ
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Since the integration is with respect to τ the variable x is consant for integration which leads to

u(x, t) =
x

2a
√
π

∫ t

0

e
− x2

4a2(t−τ)

(t− τ)3/2
f(τ)dτ

Which is the required solution of the heat equation. ■
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