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. A cube made of material whose conductivity is k has its six faces the planes x = +a,y = +a and z = *+a,
and contains no internal heat sources. Verify that the temperature distribution

u(x,y,z) = Acos(%x) sin(%z) exp<2ka7;2t)

obeys the appropirate diffusion equation. Across which faces is there heat flow? WHat is the direction
and the rate of heat flow at the point (22, %, a) at time t = a?/(k7?)?

Solution:

Since the expression is the product of sinusoids and exponentials, the derivatives are easy to calculate
and are by inspection
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Checking this on the diffusion equation,
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clearly satisfies it, Showing this function obeys the temperature diffucsion equation. The direction of

heat flow is given by the gradient of function. At t = ;—;; u = Acos(zr/a)sin(zr/a)e >
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So the rate of heat flow is

. Schrodinger’s equation for an non=reativistic particle ina constant potential region can be taken as
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(a) Find a solution, separable in the four independent variables, that can be written in the form of a
plane wave

Y(x,y, 2z,t) = Aexp(i(k.r — wt))



Using the relationships associated with de Broglie (p = hk) and Einstein (E = hw), show that the
separation constants must be such that

p:+p, +p:=2mE

Solution:
Lets assume the solution u(z,y, z,t) = XY ZT where X is purely function of 2 only and so on with
T being pure function of ¢. Substuting this product in the given PDE we get

hQ
——(X"YZT + XY"ZT + XY Z"T) = ihXY ZT'

m
Where X" and so on are total second derivative of their only parameters, x and so on. Dividing
thorough by the product XY ZT we obtain
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Since we assumed that each X,Y, Z, and T are independent of each other the only way the function
of independent variables can be equal is if they are each equal to a constant. Let the constant that
each side are equal be E. So we get.

X// Y// Z// T/
(X + v + Z) = ih? = F (Separation Constant)

h2

Solving the ordinary differential equan in ¢ we get

T’ E drT E E . E
? = 72%’ = ? = 7’Lﬁdt, = ln(T) = 71Et, =T = Toefwt;Where w = %

Also the LHS must equal same constant so
X// YI/ Z// QmE
(x Ty T z) R
The LHS of this expression is sum of three independent functions and the RHS is a constant void of
any variables under considerations. The only way that can happen is if each independent function
is a constant
Yl/
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Substuting these back in the differential equation imply that they are related by the expression

—k2 — kzg — k2 = —QQZE. If we write p, = hky,py = hky, and p, = hk,. Then we get

p2+p,+p2 =2mE (1)

Each ODE in XY and Z are well known Harmonic oscillator differential equations and the solution
of each are

X =Xoe ™" Y =Yoe M Z = Zge (2)
Where each of Xg,Yy and Z; are constants. Combining all these in our final solution we get

w(z,y, 2,t) = XY ZT = Xoe o7 - Yye~v¥ . Zge™ =2 . Tyt
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If we write A = XoYoZoTo, k= kX4 k¥ + k,Z and r = 2X + y¥y + 22 then the solution takes
the form

u(@,y, 2, 1) = Ae”rmeh (3)
Which is the required solution of the given Schrodinger’s equation.
Obtain a different separable solution describing a particle confined to a box of side a (1 must vanish
at the walls of the box). Show that the energy of the particle can only take quantized values
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where ng, ny, n, are integers.

Solution:

If the solution vanish at the wall of box then each solution given by (??) should vanish at the wall.
So this iimplies
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Substuting these values in (?77) we get
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Which is the required solution l

3. Consider possible solutions of Laplaec’s equation inside a circular domain as follows

(a)

Find the sollution in plane polar corrdinates p, ¢ that takes the value +1 for 0 < ¢ < 7 and the
value —1 for —m < ¢ < 0 where p = a.

Solution:

The general solution for the Laplace’s equation in plane polar coordinate system, where the solution
is finite at p =0 is

u(p,¢) =D+ (Cnp™)(Ay cosng + By sinng)

Since the given boundary condition is an odd function of phi, the even function term in the above
general solution must vanish so, D = 0 and A4,, = 0. The remaining general solution is

u(p, @) = > p"(Bnsinng)
Where C,, is absorbed inside of B,, B

For a point (z,y) on or inside the circle 22 + y? = a2, identify the angles o and 3 defined by

azatan( Y ); and 5:atan( Y )
a+x a—x

Show that u(z,y) = (2/7)(a + ) is a solution of Laplace’s equation that satisfies the boundary
conditions given in (77).



Solution:
Using the trigonometric identity of inverse tangents we get
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U(l‘,y) = ;(O{‘FB) = W(atan(ﬁﬂ) —|—atan<H>> = Watan((ﬂ_xz_yz)

To verify that u(z,y) satisfies the Laplace’s equation we have to show that gz—“ + giyg = 0. Calcu-

2
lating this expression
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Similarly the second partial derivatives of each is
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On adding g%‘ and aiy’; we find that it is identically zero. So it satisfies the laplace’s equation.

On at the boundary a? = 22 4+ y2? and inside the boundary a? > 22 + 32 so a? > 22 4+ y2. On the
boundary

2y 2 T
2> = —sgn(2y) - = sgn(y)
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Where sgn(z) is the sign function. But on boundary y = asin ¢ where «a is the radius and ¢ is the
azimuthal angle. The function sin ¢ is positive for 0 < ¢ < 7w and negative for —7 < ¢ < 0, so

1 O<o<m

u(r,y) = sgn(y) = sgn(sin ¢) = {_1 —T<¢<0

Thus the function satisfies Laplace’s equation and also the boundary condition. B

Deduce a Fourier series expansion for the function
sin ¢ sin ¢
atan| ———— atan| ————
(1+cos¢)+ (lcosgb)
Solution:

Again by trigonometric identity

flg) = atan< sin ¢ ) + atan<smd)) = atan( 2sin ¢ > = gsgn(sin ¢) = {W/2

1+ cos¢ 1 —sin® ¢ — cos? ¢ —m/2
Let the fourier series of this function f(¢) be

f(¢) = % +Zancosn¢+bnsinn¢

This is a well known periodic square wave function. It is an odd function so a, = 0 whose fourier
series is given by

an =0; and b, = ﬁ(l — (=™
n

O<op<m
—T<p<0



So the required fouerier series of the function is

in ¢ ing ) _ v "
f(o) = atan(ﬁcosqj + atan(licosd)) = Z %(1 — (=1)")sinng

This is the required fourier series of the function. M

4. A conducting spherical shell of radius a cut round its equator and the two halves connected to voltages
+V and —V. Show that an expression for the potential at the point (r,6, ¢) anywhere inside the two
hemispheres is

u(r,0,¢) = Z (4n + 3) (a>2n+1P2n+1(cos 0)
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Solution:

For the spherical split spherical shell maintained at two differential potentials, let the potential every-
where inside the spherical shell be v. Since we know electric field is given by E = Vv and since for
Electric field V-E = 0. We get V-E = V- Vv = V2v = 0. So the potential satisfies the Laplace’s
equation. If we suppose v as a function of r, 6, ¢ in spherical coordinate system, then the solution to
Laplace’s equation in spherical coordinate system is given by

v(r,0,¢) = Z(Arl + Br~ D) (C cos me 4+ D sinm)(EP™(cos 0) + FQJ(cos h))

lm

Where Q7" (z) and P/ (x) are solution to the associated Legendre’s equations. And all other constants
are determined by boundary condition.

Since we have finite potential at at the center of sphere r = 0, the coefficient B = 0. Also since we have
spherical symmetry and the potential is single valued function m = 0. Also we have finite potential at
poles of sphere wchich correspond to 6 = {0, 7} and Q! (1) diverges, we have F' = 0. Also P?(z) = P(x)
where P(x) are legendre polynomials. Owing to these boundary conditions the most general solution is

v(r,0,¢) =Y Air' Py(cos 6) (4)
l

Since there is no ¢ dependence, let the potential at surface be denoted by v, which is clearly jut function
of 0.

ve(0) = v(a,d,9) = ZAlalPl(cos 0)
1

If we multiply both sides by Py(cosf) and and integrate with respect to d(cos8) from 0 to 1 using the
fact that Legendre’s polynomials are orthogonal, [ PyP, = 6 we get.

/1 04 (0) Py (cos 8)d(cost) = /1 (Z Ajal Py(cos 8) Py, (cos 6)d(cos 9))
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So the coefficient Ay, is given by

m:%A%@m@mwmm (5)



The recurrance relation of Legendre polynomials can be used to evaluate the integrals as

(2n+1)P, = P i4(z) — P,y (2) (6)
Integrating (?7?) we get,
1

Since Potential can have any arbitrary reference we can choose the integration constant to be K = 0.
Using this fact in (?7?) we get

1

As given in the problen on the upper hemisphere the potential is +V and on the lowe hemisphere the
potential is — V', It can be mathematically represented as

va(ﬁ)—{v ifo<o<3

-V o ifs<f<n

Substuting this in (??) we get and writing x = cos
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For evn value of k, both £ — 1 and &k + 1 are odd and hence Py_1(0) = 0 and Px_1(0) = 0. Foe even k,
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But for odd value of k, k + 1 and k — 1 are even, hence both Py_1(1) = Pr+1(1) = 1 and writing
k=2n+1

Ak—K 1 <(1)2"(2(2n)! (1)2<n+1>(2(2(n+1))!>

g = 0-0—-14+1)=0
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Using this coefficient in (??) we get
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Which is the required potential function inside the spherical region. Bl



