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1. A cube made of material whose conductivity is k has its six faces the planes x = ±a, y = ±a and z = ±a,
and contains no internal heat sources. Verify that the temperature distribution

u(x, y, z) = A cos
(πx
a

)
sin
(πz
a

)
exp

(
−2kπ2t

a2

)
obeys the appropirate diffusion equation. Across which faces is there heat flow? WHat is the direction
and the rate of heat flow at the point

(
3a
4 ,

a
4 , a
)
at time t = a2/(κπ2)?

Solution:
Since the expression is the product of sinusoids and exponentials, the derivatives are easy to calculate
and are by inspection

∂2u

∂x2
= −π

2

a2
u;

∂2u

∂y2
= −π

2

a2
u;

∂u

∂t
= −2

κπ2

a2

Checking this on the diffusion equation,

∂2u

∂x2
+
∂2u

∂z2
= 2

π2

a2
=

1

κ
− 2

π2

a2
=

1

κ

∂u

∂t

clearly satisfies it, Showing this function obeys the temperature diffucsion equation. The direction of

heat flow is given by the gradient of function. At t = a2

κπ2 ;u = A cos(xπ/a) sin(zπ/a)e−2

∇u =
∂u

∂x
î+

∂u

∂z
k̂ = A

πe−2

a
(− sin(xπ/a) sin(zπ/a)̂i+ cos(xπ/a) cos(zπ/a)k̂)

= A
e−2π

a
(− sin(π/4) sin(π)̂i+ cos(π/4) cos(π)k̂)

= A
e−2π

a

(
− 1√

2
k̂

)

So the rate of heat flow is
Ae−2π

a
√
2

in the direction of −k̂ ■

2. Schrodinger’s equation for an non=reativistic particle ina constant potential region can be taken as

− ℏ2

2m

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= iℏ

∂u

∂t

(a) Find a solution, separable in the four independent variables, that can be written in the form of a
plane wave

ψ(x, y, z, t) = A exp(i(k.r− ωt))
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Using the relationships associated with de Broglie (p = ℏk) and Einstein (E = ℏω), show that the
separation constants must be such that

p2x + p2y + p2z = 2mE

Solution:
Lets assume the solution u(x, y, z, t) = XY ZT where X is purely function of x only and so on with
T being pure function of t. Substuting this product in the given PDE we get

− ℏ2

2m
(X ′′Y ZT +XY ′′ZT +XY Z ′′T ) = iℏXY ZT ′

Where X ′′ and so on are total second derivative of their only parameters, x and so on. Dividing
thorough by the product XY ZT we obtain

− ℏ2

2m

(
X ′′

X
+
Y ′′

Y
+
Z ′′

Z

)
= iℏ

T ′

T

Since we assumed that each X,Y, Z, and T are independent of each other the only way the function
of independent variables can be equal is if they are each equal to a constant. Let the constant that
each side are equal be E. So we get.

− ℏ2

2m

(
X ′′

X
+
Y ′′

Y
+
Z ′′

Z

)
= iℏ

T ′

T
= E (Separation Constant)

Solving the ordinary differential equan in t we get

T ′

T
= −iE

ℏ
; ⇒ dT

T
= −iE

ℏ
dt; ⇒ ln(T ) = −iE

ℏ
t; ⇒ T = T0e

−iωt;Where ω =
E

ℏ

Also the LHS must equal same constant so(
X ′′

X
+
Y ′′

Y
+
Z ′′

Z

)
= −2mE

ℏ2

The LHS of this expression is sum of three independent functions and the RHS is a constant void of
any variables under considerations. The only way that can happen is if each independent function
is a constant

X ′′

X
= −k2x;

Y ′′

Y
= −k2y;

Z ′′

Z
= −k2z

Substuting these back in the differential equation imply that they are related by the expression
−k2x − k2y − k2z = −2mE

ℏ2 . If we write px = ℏkx, py = ℏky, and pz = ℏkz. Then we get

p2x + p2y + p2z = 2mE (1)

Each ODE in X,Y and Z are well known Harmonic oscillator differential equations and the solution
of each are

X = X0e
−ikxx; Y = Y0e

−ikyy; Z = Z0e
−ikzz (2)

Where each of X0, Y0 and Z0 are constants. Combining all these in our final solution we get

u(x, y, z, t) = XY ZT = X0e
−ikxx · Y0e−ikyy · Z0e

−ikzz · T0e−iωt

= X0Y0Z0T0e
−ikxx−ikyy−ikzz−iωt
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If we write A = X0Y0Z0T0, k = kxx̂+ kyŷ + kxẑ and r = xx̂+ yŷ + xẑ then the solution takes
the form

u(x, y, z, t) = Ae−i(k·r−ωt) (3)

Which is the required solution of the given Schrodinger’s equation. ■

(b) Obtain a different separable solution describing a particle confined to a box of side a (ψ must vanish
at the walls of the box). Show that the energy of the particle can only take quantized values

E =
ℏ2π2

2ma2
(
n2x + n2y + n2z

)
where nx, ny, nz are integers.
Solution:
If the solution vanish at the wall of box then each solution given by (??) should vanish at the wall.
So this iimplies

0 = X0e
−ikxa 0 = Y0e

−ikya 0 = Z0e
−ikza

⇒ kxa = πnx kya = πny ⇒ kza = πnz

⇒ kx =
πnx

a
ky =

πny

a
⇒ kz =

πnz

a

Substuting these values in (??) we get

−
(nxπ

a

)2
−
(nyπ
a

)2
−
(nzπ
a

)2
= −2mE

ℏ2
; ⇒ ℏ2π2

2ma2
(
n2x + n2y + n2z

)
= E

Which is the required solution ■

3. Consider possible solutions of Laplaec’s equation inside a circular domain as follows

(a) Find the sollution in plane polar corrdinates ρ, ϕ that takes the value +1 for 0 < ϕ < π and the
value −1 for −π < ϕ < 0 where ρ = a.
Solution:
The general solution for the Laplace’s equation in plane polar coordinate system, where the solution
is finite at ρ = 0 is

u(ρ, ϕ) = D +
∑
n

(Cnρ
n)(An cosnϕ+Bn sinnϕ)

Since the given boundary condition is an odd function of phi, the even function term in the above
general solution must vanish so, D = 0 and An = 0. The remaining general solution is

u(ρ, ϕ) =
∑
n

ρn(Bn sinnϕ)

Where Cn is absorbed inside of Bn ■

(b) For a point (x, y) on or inside the circle x2 + y2 = a2, identify the angles α and β defined by

α = atan

(
y

a+ x

)
; and β = atan

(
y

a− x

)
Show that u(x, y) = (2/π)(α + β) is a solution of Laplace’s equation that satisfies the boundary
conditions given in (??).
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Solution:
Using the trigonometric identity of inverse tangents we get

u(x, y) =
2

π
(α+ β) =

2

π

(
atan

(
y

a+ x

)
+ atan

(
y

a− x

))
=

2

π
atan

(
2y

a2 − x2 − y2

)
To verify that u(x, y) satisfies the Laplace’s equation we have to show that ∂2u

∂x2 + ∂2u
∂y2 = 0. Calcu-

lating this expression

∂u

∂x
=

2y
(
− (a− x)

2
+ (a+ x)

2
)

π
(
y2 + (a− x)

2
)(

y2 + (a+ x)
2
) ; ∂u

∂y
=

2
(
(a− x)

(
y2 + (a+ x)

2
)
+ (a+ x)

(
y2 + (a− x)

2
))

π
(
y2 + (a− x)

2
)(

y2 + (a+ x)
2
)

Similarly the second partial derivatives of each is

∂2u

∂x2
=

4ay

π
(
y2 + (a+ x)

2
)2 +

4ay

π
(
y2 + (a− x)

2
)2 +

4xy

π
(
y2 + (a+ x)

2
)2 − 4xy

π
(
y2 + (a− x)

2
)2

∂2u

∂y2
=

8ay
(
−a4 − 2a2x2 − 2a2y2 + 3x4 + 2x2y2 − y4

)
π (a2 − 2ax+ x2 + y2)

2
(a2 + 2ax+ x2 + y2)

2

On adding ∂2u
∂x2 and ∂2u

∂y2 we find that it is identically zero. So it satisfies the laplace’s equation.

On at the boundary a2 = x2 + y2 and inside the boundary a2 > x2 + y2 so a2 ≥ x2 + y2. On the
boundary

u(x, y) =
2

π
atan

(
2y

a2 − x2 − y2

)
=

2

π
sgn(2y)

π

2
= sgn(y)

Where sgn(x) is the sign function. But on boundary y = a sinϕ where a is the radius and ϕ is the
azimuthal angle. The function sinϕ is positive for 0 < ϕ < π and negative for −π < ϕ < 0, so

u(x, y) = sgn(y) = sgn(sinϕ) =

{
1 0 < ϕ < π

−1 −π < ϕ < 0

Thus the function satisfies Laplace’s equation and also the boundary condition. ■

(c) Deduce a Fourier series expansion for the function

atan

(
sinϕ

1 + cosϕ

)
+ atan

(
sinϕ

1− cosϕ

)
Solution:
Again by trigonometric identity

f(ϕ) = atan

(
sinϕ

1 + cosϕ

)
+ atan

(
sinϕ

1− cosϕ

)
= atan

(
2 sinϕ

1− sin2 ϕ− cos2 ϕ

)
=
π

2
sgn(sinϕ) =

{
π/2 0 < ϕ < π

−π/2 −π < ϕ < 0

Let the fourier series of this function f(ϕ) be

f(ϕ) =
a0
2

+
∑
n

an cosnϕ+ bn sinnϕ

This is a well known periodic square wave function. It is an odd function so an = 0 whose fourier
series is given by

an = 0; and bn =
π

n
(1− (−1)n)
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So the required fouerier series of the function is

f(ϕ) = atan

(
sinϕ

1 + cosϕ

)
+ atan

(
sinϕ

1− cosϕ

)
=

∞∑
n=1

π

n
(1− (−1)n) sinnϕ

This is the required fourier series of the function. ■

4. A conducting spherical shell of radius a cut round its equator and the two halves connected to voltages
+V and −V . Show that an expression for the potential at the point (r, θ, ϕ) anywhere inside the two
hemispheres is

u(r, θ, ϕ) = V

∞∑
n=0

(−1)n(2n)!(4n+ 3)

22n+1n!(n+ 1)!

( r
a

)2n+1

P2n+1(cos θ)

Solution:
For the spherical split spherical shell maintained at two differential potentials, let the potential every-
where inside the spherical shell be v. Since we know electric field is given by E = ∇v and since for
Electric field ∇ · E = 0. We get ∇ · E = ∇ · ∇v = ∇2v = 0. So the potential satisfies the Laplace’s
equation. If we suppose v as a function of r, θ, ϕ in spherical coordinate system, then the solution to
Laplace’s equation in spherical coordinate system is given by

v(r, θ, ϕ) =

∞∑
l,m

(Arl +Br−(l+1))(C cosmϕ+D sinmϕ)(EPm
l (cos θ) + FQm

l (cos θ))

Where Qm
l (x) and Pm

l (x) are solution to the associated Legendre’s equations. And all other constants
are determined by boundary condition.

Since we have finite potential at at the center of sphere r = 0, the coefficient B = 0. Also since we have
spherical symmetry and the potential is single valued function m = 0. Also we have finite potential at
poles of sphere wchich correspond to θ = {0, π} and Qm

l (1) diverges, we have F = 0. Also P 0
l (x) = Pl(x)

where Pl(x) are legendre polynomials. Owing to these boundary conditions the most general solution is

v(r, θ, ϕ) =
∑
l

Alr
lPl(cos θ) (4)

Since there is no ϕ dependence, let the potential at surface be denoted by va which is clearly jut function
of θ.

va(θ) = v(a, θ, ϕ) =
∑
l

Ala
lPl(cos θ)

If we multiply both sides by Pk(cos θ) and and integrate with respect to d(cos θ) from 0 to 1 using the
fact that Legendre’s polynomials are orthogonal,

∫
PkPl = δkl we get.∫ 1

0

va(θ)Pk(cos θ)d(cosθ) =

∫ 1

0

(∑
l

Ala
lPl(cos θ)Pk(cos θ)d(cos θ)

)

=
∑
l

(∫ 1

0

Ala
lPl(cos θ)Pk(cos θ)d(cos θ)

)
=
∑
l

Ala
lδlk = Aka

k

So the coefficient Ak is given by

Ak =
1

ak

∫ 1

0

va(θ)Pk(cos θ)d(cos θ) (5)
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The recurrance relation of Legendre polynomials can be used to evaluate the integrals as

(2n+ 1)Pn = P ′
n+1(x)− P ′

n−1(x) (6)

Integrating (??) we get, ∫
Pn =

1

2n+ 1
(Pn+1(x)− Pn−x(x)) +K

Since Potential can have any arbitrary reference we can choose the integration constant to be K = 0.
Using this fact in (??) we get

Ak =
1

ak(2n+ 1)
(7)

As given in the problen on the upper hemisphere the potential is +V and on the lowe hemisphere the
potential is −V , It can be mathematically represented as

va(θ) =

{
V if 0 < θ < π

2

−V if π
2 < θ < π

Substuting this in (??) we get and writing x = cos θ

Ak =
1

ak

∫ 1

0

V Pk(x)dx

=
V

ak
1

2k + 1

(
[Pk+1(x)− Pk−1(x)]

1
0

)
=
V

ak
1

2k + 1
(Pk+1(1)− Pk−1(1)− Pk+1(0) + Pk−1(0))

=
V

ak
1

2k + 1
(Pk−1(0)− Pk+1(0))

Since

Pn(0) =


(−1)n(2n)!

22nn!2
, n even

0, otherwise

For evn value of k, both k − 1 and k + 1 are odd and hence Pk−1(0) = 0 and Pk−1(0) = 0. Foe even k,

Ak =
V

ak
1

2k + 1
(0− 0− 1 + 1) = 0

But for odd value of k, k + 1 and k − 1 are even, hence both Pk−1(1) = Pk+1(1) = 1 and writing
k = 2n+ 1

Ak =
V

ak
1

4n+ 3

(
(−1)2n(2(2n)!

22(2n)(2n)!2
− (−1)2(n+1)(2(2(n+ 1))!

22(2(n+1))(2(n+ 1))!2

)
=

(4n!)

den
=
V

ak
(−1)n(2n)!(4n+ 3)

22n+1n!(n+ 1)!

Using this coefficient in (??) we get

v(r, θ, ϕ) = V

∞∑
n=0

(−1)n(2n)!(4n+ 3)

22n+1n!(n+ 1)!

( r
a

)2k+1

P2n+1(cos θ)

Which is the required potential function inside the spherical region. ■
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