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1. Use the general definition and properties of Fourier transforms to show the following

(a) If f(x) is periodic with period a then f̃(k) = 0, unless ka = 2πn for integer n.
Solution:
We know by definition of fourier transform

F(f(t)) =

∫ ∞

−∞
f(t)e−iktdt = f̃(k) (Defition)

F(f(t− a)) =

∫ ∞

−∞
f(t− a)e−iktdt = e−ikaf̃(k) (Shifting property)

Since the function is periodic f(t) = f(t− a) and hence F(f(t)) = F(f(t− a)). So,

f̃(k) = e−ikaf̃(k); ⇒ (e−ika − 1)f̃(ω) = 0;

Either f(k) = 0 Or e−ika = 1; ⇒ ka = 2πn. Which completes the proof. ■

(b) The Fourier transform of tf(t) is df̃(ω)/dω.
Solution:

d

dω

(
f̃(ω)

)
=

d

dω

∫ ∞

−∞
f(t)e−iωtdt =

∫ ∞

−∞

∂

∂ω

(
f(t)e−iωt

)
dt =

∫ ∞

−∞
itf(t)e−iωtdt = −iF(tf(t))

So the fourier transform of tf(t) is F(tf(t)) = idf̃(ω)/dω. ■

(c) The Fourier transform of f(mt+ c) is
eiωc/m

m
f̃
(ω
n

)
Solution:
Making a change of variable mt+ c = p; t = p−c

m ; dt = 1
mdp so e−iωt = eiωc/me−iω/mp

F(f(mt+ c)) =

∞∫
−∞

f(mt+ c)e−iωtdt =

∞∫
−∞

f(p)eiωc/meiωp 1

m
dp =

eiωc/m

m

∞∫
−∞

f(p)e−iω/mpdp =
eiωc/m

m
f̃
( ω

m

)
So the fourier transform of f(mt+ c) is shown as required. ■
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2. Find the fourier sine transformf̃(ω) of of the function f(t) = t−1/2 and by differentiating with respect to ω
find the differential equation satisfied by it. Hence show that the the sine transform of this function is the
function itself.
Solution:
By definition of sine transform f̃(ω) =

∫∞
0

f(t) sin(ωt)dt we have for f(t) = t−1/2.

d

dω
(f̃(ω)) =

d

dω

∫ ∞

0

1√
t
sin(ωt)dt =

∫ ∞

0

∂

∂ω

(
1√
t
sin(ωt)

)
dt =

∫ ∞

0

√
t cos(ωt)dt

Integrating the RHS by parts we get

d

dω
(f̃(ω)) =

√
t
sin(ωt)

ω

∣∣∣∣∞
0

−
∫ ∞

0

1

2
√
t

sin(ωt)

ω
=

1

ω

[
��������:0 assumed

lim
t→∞

√
t sin(ωt)− 0

]
− 1

2ω
f̃(ω)

So the differential equation satisfied by the sine transform is

d

dω

(
f̃(ω)

)
+

1

2ω
f̃(ω) = 0

This differntial equation can be solved as:

df̃(ω)

dω
= − 1

2ω
f̃(ω); ⇒

∫
df̃(ω)

˜f(ω)
=

∫
−dω

2ω
; ⇒ ln(f̃(ω)) = −1

2
ln(ω) + lnA; ⇒ f̃(ω) = Aω−1/2

But since f(t) = t−1/2 the value of f(ω) = w−1/2, so from above expression we get.

f̃(ω) = Af(ω)

Since we have the sine transform f̃(ω) = Af(ω) the sine transform fo this given function is the function
itself. ■

3. Prove the equality ∫ ∞

0

e−2at sin2 at dt =
1

π

∫ ∞

0

a2

4a4 + w4
dω

Solution:
It can be noticed that the LHS of the given equality is the square integral of function f(t) = e−at sin(at)
from 0 to ∞. Since the lower limit is 0 we can take the fourier transform of this function u(t)f(t) where u(t)
is the step function

f̃(ω) =

∞∫
−∞

u(t)f(t)e−iωtdt =

∞∫
0

e−at sin(at)e−iωtdt =
a

a2 + (a+ iω)2

The absolute value of the fourier transfom of the function is∣∣∣f̃(ω)∣∣∣ = ∣∣∣∣ a

a2 + (a+ iω)2

∣∣∣∣ = a2√
4a4 + w4

Now by use of Parseval’s theorem we have

∞∫
−∞

|u(t)f(t)|2dt =
∞∫

−∞

|f̃(ω)|2dω ( Parseval’s theorem)
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Substituting f(t) and f̃(ω) noting that the function f̃(ω) is even

∞∫
0

e−2at sin2(at)dt =
1

2π

∞∫
−∞

(
a2√

4a4 + w4

)2

dω =
1

π

∞∫
0

a4

4a4 + w4
dω

This completes the proof. ■

4. By writing f(x) as an integral involving the δ-function, δ(ξ − x) and taking the laplace transform of both
sides show that the transform of the solution of the equation

d4y

dx4
− y = f(x)

for which y and its first three derivatives vanish at x = 0 can be written as

ỹ(s) =

∫ ∞

0

f(ξ)
e−sξ

s4 − 1
dξ

Solution:
The function f(x) can be written as the integral of delta functions as

f(x) =

∫ ∞

0

δ(ξ − x)f(ξ)dξ

So the Laplace transform of the function is

f̃(s) =

∫ ∞

0

{∫ ∞

0

δ(ξ − x)f(ξ)dξ

}
e−sxdx =

∫ ∞

0

{∫ ∞

0

δ(ξ − x)e−sxdx

}
f(ξ)dξ =

∫ ∞

0

e−sξf(ξ)dξ

Taking the laplace transform of the given differential equation we get

s4ỹ(s)− ỹ(s) = f̃(s) =

∫ ∞

0

e−sξf(ξ)dξ; ⇒ ỹ(s) =

∫ ∞

0

e−sξ

s4 − 1
f(ξ)dξ

Now for the solution this function can be expressed as the product of two functions as

ỹ(s) =
1

s4 − 1︸ ︷︷ ︸
g̃(s)

∫ ∞

0

f(ξ)e−sξdξ︸ ︷︷ ︸
f̃(s)

The inverse laplace transform of f̃(s) is simply f(x) and the fourier transform of g̃(s) can be obtained as

g(s) = L−1

(
1

s4 − 1

)
= L−1

(
1

2

[
1

s2 − 1
− 1

s2 + 1

])
=

1

2
[sinh(x)− sin(x)]

Now the laplace inverse of the product of the function is the convolution of inverses so

y(x) = f(x) ∗ g(x) =
∫ x

0

f(ξ)g(x− ξ)dξ =
1

2

∫ x

0

f(ξ)[sinh(x− ξ)− sin(x− ξ)]dξ

Which completes the proof. ■
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