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1. Use contour integration to find the inverse Fourier transform f(¢) of the function

/2 sinwa

(where a > 0), for all values of ¢. Recall that F' was obtained as a Fourier transform of a step function with
a discontuinity at |t| = a. What is the value of f(a)? (Determine f(a) from the integral — don’t appeal to
the integral properties of Fourier Transforms!).

Solution:

Writing it as
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Considering the integral
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If we take limit as R — oo and € — 0 the last two terms of the integral converge to the integral along the w
axis. If the contour is in the upper half of the plane, then the first term of above integral goes to zero by
Jordans Lemma if (a —¢) > 0. But if (a —t) < 0 then the integral goes to zero only if the contour is in the
lower half of the z plane
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As seen above
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Also we can see
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If ¢ = a (with contour on top half,) then
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From (??) and Eq. (?7?) and Eq. (??7) we get
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Considering the integral
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By similar arguments
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From Eq. (??) and Eq. (?7?) we get.
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Combining all these we get
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So the value of f(a) is 5 from the inverse fourier transform. M

2. Find the 3 — D Fourier transform of the wave function for a 2p electron in a hydrogen atom:
(&) = (327a®) "/ 2z /2%0

where a = 7:”; is the Bohr radius, r is radius, and z is a rectangular corrdinate.

Solution:

Supposing A = (327a’)~1/? and in spherical coordinate system z = rcos(f). Also the volume element in
spherical system is d*r = r?sin(#)d¢df Also due to spherical symmetry we can write k7= kr cos(0) [Riley
and Hobson pp 906] The fourier transform is then
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The integral of this function can be obtained with contour integral
With substitution z = 1/(2a) — ik and cos(kr) = Ree’*"
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This gives the fourier transform of the function. W

3. Consider the solution to the ordinary differential equation

d?y
— +zy=0
dx? oy
for which |y| — 0 as |z| — oo. (This is the Airy equation. It appears in the theory of the diffaraction of
light.)
(a) Sketch the solution. Don’t use Mathematica!. Specifically, what behavior do you expect as © — —oo and
x — 4007
Solution:

(b) By fourier transforming the above equation, determine Y (w), te Fourier transform of y(z), and hence write
down an integral expression for y(z). (Hint: What is the inverse transform of Y'(w))
Solution:
Let us suppose that the fourier transform of y(x) is Y (w). The fourier transform can be written as
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Taking derivative of both sides with respect to w
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Taking the fourier transform of both sides of given differential equation we get,

d?
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Using the property of fourier transform F(y”) = (—iw)?F(y) the fourier transform and using F(zy) from
Eq. (?7?7) we get.
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The solution for the Airy equation which is our original differential equation is just the inverse fourier
transform of this equation.
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This gives the integral expression for the solution of the differential equation required. B

4. Find the Greens function G(z, ') for the equation

d*y 2
a2 k*y = f(z)
for 0 <z <, with y(0) = y(I) = 0.
Solution:
The green’s function solution to non homogenous differential equation Ly = f(z) is a solution to homogenous
part of the differential equation with the source part replaced as delta function Ly = §(z —2’). The ontained
solution is G(x,2'), i.e., LG(x,2’) = §(x — 2’). This solution corresponds to the homogenous part only as it
is independent of any source term f(x).
d2 / 2 / : / / /
WG(x,x)—k: y=4d(x—2a'); with G(0,2") = 0; and G(l,2") =0 for all 0 < 2’ <1 (8)
x
Since delta function §(x — 2’) is zero everywhere except x = z’ we can find solution for two regions = < 2’
and x > 2’. For z < 2’ let the solution to Ly = 0 be y; () and for & > 2’ be ya(z) then

vy (2) — kg1 (z) = 0; for x < 2; vy (x) — k*ya(z) = 0; for x> o’
These are well known harmonic oscillator equations whose solution are
y1(z) = Asin(kx) + Beos(kx); ya(x) = Csin(kx) + Deos(kx)

By the boundary condition y;(0) = 0 and y2(I) = 0. These immediately imply that B = 0. Also since the
soution to the differential equation must be continuous y(z') = ya2(2’). Also integrating Eq. (?7?) in the

vicinity of 2’ we get
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From three different conditions, (i) contunity at ', (ii) y2(I) = 0 and (iii) y; (') —y5(z") = 1 we get following
three linear equations. Using there parameters we get.

y' ()

Ckcos(kx') — Dksin(kz') — Ak cos(kx') = 1
Csin(kz") + D cos(kx') — Asin(kz’) = 0
C'sin(kl) + D cos(kl) =0
Which can be written in the matrix form and solved as.
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sin (kz') cos (kz') —sin(kz’) | |D| = [0| = |D| = | —%sin(ka')
sin (k) cos (kl) 0 A 0 A _sin (k(1=2'))
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Giving
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Eq.(??) gives the Green’s function whein can be used to find the solution to the differential equation

y(z) = / Gz, o) f(')da’

The solution to the original inhomogenous differential equation can is given by the above expression in terms
of Green’s function. B

5. Poissons equation (in three dimensions) is V2¢ = 47Gp

(a) Let ¢(K) be the fourier transforms of ¢(z) and p(x), respectively show that:

~ ArGp
(b = - k2

and hence write down an integral expression for ¢(z).
Solution:
Taking the fourier transform ov Poissons equation we have
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Wriging in cartesian coordinate system k= ki + kyj + kok and 7= 21 + yj + zk we have
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This gives the expression for the fourier transform for Poisson’s equation. This can be used to get the
expression of ¢(Z) which is
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This is the expression for ¢(z) which is the solution to Poisson’s equation. H

¢(Z) =




(b) For a point mass at the origin, p(z) = md(z). Use the above to determine the expression for ¢(z)
Solution:
Taking the fourier transform of given density function

p(k) = / mé(F)e* Td>r = m; Integral of delta function is 1

Substuting this in Eq. (??) we get
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This integral should give ¢(z) = —€2 for 2 > 0 W
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