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1. Use contour integration to find the inverse Fourier transform f(t) of the function

F (ω) =

√
2

π

sinωa

ω

(where a > 0), for all values of t. Recall that F was obtained as a Fourier transform of a step function with
a discontuinity at |t| = a. What is the value of f(a)? (Determine f(a) from the integral – don’t appeal to
the integral properties of Fourier Transforms!).
Solution:
Writing it as

f(t) = F−1

(√
2

π

sinωa

ω

)
=

1√
2π

∞∫
−∞

√
2

π

sinωa

ω
e−iωtdω =

1√
2π

√
2

π

∞∫
−∞

eiωa − e−iωa

2iω
e−iωtdω

=
1

2iπ


∞∫

−∞

ei(a−t)ω

ω
dω

︸ ︷︷ ︸
I1

−
∞∫

−∞

e−i(a+t)ω

ω
dω

︸ ︷︷ ︸
I2


=

1

2iπ
[I1 − I2] (1)

Considering the integral

A =

∮
C

ei(a−t)z

z
dz =

∫
ΓR

ei(a−t)z

z
dz +

∫
Γϵ

ei(a−t)z

z
dz +

−ϵ∫
−R

ei(a−t)ω

ω
dω +

R∫
ϵ

ei(a−t)

ω
dω

︸ ︷︷ ︸
I1

If we take limit as R→ ∞ and ϵ→ 0 the last two terms of the integral converge to the integral along the ω
axis. If the contour is in the upper half of the plane, then the first term of above integral goes to zero by
Jordans Lemma if (a− t) > 0. But if (a− t) < 0 then the integral goes to zero only if the contour is in the
lower half of the z plane
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If a− t > 0; t < a

×
ϵ R−R −ϵ Re(z)

Im(z)

Γε

ΓR

As seen above

A = I1 +
������*0 By Jordan’s Lemma∫
ΓR

ei(a−t)z

z
dz +

∫
Γϵ

ei(a−t)z

z
dz = 0

⇒ I1 −
1

2
2πiResf(0) = 0

⇒ I1 − πi lim
z→0

z
ei(a−t)z

z
= 0

⇒ I1 = πi (2)

If a− t < 0; t > a

×
ϵ

R−R
−ϵ Re(z)

Im(z)

Γε

ΓR

Also we can see

A = I1 +

�
�
�
�

��>
0 By Jordan’s Lemma∫

ΓR

ei(a−t)z

z
dz +

∫
Γϵ

ei(a−t)z

z
dz = −2πiResf(0)

⇒ I1 −
1

2
2πiResf(0) = −2πiResf(0)

⇒ I1 = −πiResf(0)

⇒ I1 = −πi lim
z→0

z
ei(a−t)z

z
= −πi (3)

If t = a (with contour on top half,) then

A = I1 +

∫
ΓR

ei(a−t)z

z
dz +

∫
Γϵ

ei(a−t)z

z
dz = I1 +

�
�
�
��
πiResf(0)∫

ΓR

1

z
dz +

�
�
�
��
−πiResf(0)∫

Γϵ

1

z
dz = 0;⇒ I1 = 0 (4)

From (??) and Eq. (??) and Eq. (??) we get

I1 =


πi if a− t > 0

0 if t = a

−πi if a− t < 0

(5)

Considering the integral

B =

∮
C

e−i(a+t)z

z
dz =

∫
ΓR

e−i(a+t)z

z
dz +

∫
Γϵ

e−i(a+t)z

z
dz +

∫ −ϵ

−R

e−i(a+t)ω

ω
dω +

∫ R

ϵ

e−i(a+t)

ω
dω︸ ︷︷ ︸

I2

= 0

By similar arguments

I2 =


πi if a+ t < 0

0 if a+ t = 0

−πi if a+ t > 0

(6)
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From Eq. (??) and Eq. (??) we get.

if t < −a; I1 = πi and I2 = πi⇒ I1 − I2 = 0; f(t) =
1

2πi
[I1− I2] = 0

if t = −a; I1 = πi and I2 = 0 ⇒ I1 − I2 = πi; f(t) =
1

2πi
[I1− I2] =

1

2

if − a < t < a; I1 = πi and I2 = −πi⇒ I1 − I2 = 2πi; f(t) =
1

2πi
[I1− I2] = 1

if t = a; I1 = 0 and I2 = −πi⇒ I1 − I2 = πi; f(t) =
1

2πi
[I1− I2] =

1

2

if t > a; I1 = −πi and I2 = −πi⇒ I1 − I2 = 0; f(t) =
1

2πi
[I1− I2] = 0

Combining all these we get

f(t) =


1 |t| < a
1
2 |t| = a

0 |t| > a

So the value of f(a) is 1
2 from the inverse fourier transform. ■

2. Find the 3−D Fourier transform of the wave function for a 2p electron in a hydrogen atom:

ψ(x⃗) = (32πa5)−1/2ze−r/2a0

where a = ℏ2

me2 is the Bohr radius, r is radius, and z is a rectangular corrdinate.
Solution:
Supposing A = (32πa5)−1/2 and in spherical coordinate system z = r cos(θ). Also the volume element in

spherical system is d3r = r2 sin(θ)dϕdθ Also due to spherical symmetry we can write k⃗ · r⃗ = kr cos(θ)[Riley
and Hobson pp 906] The fourier transform is then

Ψ(k) =
1√
(2π)3

∫ ∞

0

rcos(θ)er/2ae−ikr cos(θ)d3r =
2π√
(2π)3

∫ π

0

∫ ∞

0

r3er/2a sin(θ) cos(θ)eikr cos(θ)dθdr

Ψ(k) =
A√
(2π)3

∫ ∞

0

dr r3 e−r/(2a)

∫ π

0

dθ sin θ cos θ eikr cos θ =
A√
(2π)3

∫ ∞

0

dr r3 e−r/(2a)

∫ 0

π

d(cos θ) cos θeikr cos θ

Supposing krcos(θ) = u du = sin(θ)kdr

=
A√
(2π)3

∫ ∞

0

dr r3 e−r/(2a)

[
−i ∂

∂(kr)

∫ 1

−1

du eikru
]
=

√
2

π

∫ ∞

0

dr r3 e−r/(2a) ∂

∂(kr)

sin kr

kr

=

√
2

π

∫ ∞

0

dr r3 e−r/(2a)

[
cos kr

kr
− sin kr

(kr)2

]
The integral of this function can be obtained with contour integral

With substitution z = 1/(2a)− ik and cos(kr) = Reeikr

Ψ(k) = A

√
2

π

2

k
Re

[
1(

1
2a − ik

)3
]
−A

√
2

π

1

k2
Im

[
1(

1
2a − ik

)2
]

= A

√
2

π

2

k

1
8a3 − 3k2

2a(
1

4a2 + k2
)3 −A

√
2

π

1

k2

k
a(

1
4a2 + k2

)2
= −A

√
2

π
256a4

ka

(1 + 4k2a2)
3
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This gives the fourier transform of the function. ■

3. Consider the solution to the ordinary differential equation

d2y

dx2
+ xy = 0

for which |y| → 0 as |x| → ∞. (This is the Airy equation. It appears in the theory of the diffaraction of
light.)

(a) Sketch the solution. Don’t use Mathematica!. Specifically, what behavior do you expect as x → −∞ and
x→ +∞?
Solution:

■

(b) By fourier transforming the above equation, determine Y (ω), te Fourier transform of y(x), and hence write
down an integral expression for y(x). (Hint: What is the inverse transform of Y ′(ω))
Solution:
Let us suppose that the fourier transform of y(x) is Y (ω). The fourier transform can be written as

F(y(x)) = Y (ω) =

∞∫
−∞

y(x)e−iωxdx

.

Taking derivative of both sides with respect to ω

Y ′(ω) =
d

dω

∞∫
−∞

y(x)e−iωxdx =

∞∫
−∞

y(x)
∂

∂ω

(
e−iωx

)
dx = −i

∞∫
−∞

xy(x)e−iωxdx = −iF(xy) (7)

Taking the fourier transform of both sides of given differential equation we get,

y′′(x) + xy = 0;⇒ F
[
d2y

dx2

]
+ F (xy) = F(0);

Using the property of fourier transform F(y′′) = (−iω)2F(y) the fourier transform and using F(xy) from
Eq. (??) we get.

(−iω)2Y (ω)− iY ′(ω) = 0;⇒ Y ′(ω)

Y (ω)
= −iω2;⇒

∫
Y ′(ω)

Y (ω)
dω =

∫
−iω2dω;⇒ Y (ω) = e−iω3

3
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The solution for the Airy equation which is our original differential equation is just the inverse fourier
transform of this equation.

y(x) = F−1 [Y (ω)] =
1

2π

∞∫
−∞

e
−iω3

3 e−iωxdω

This gives the integral expression for the solution of the differential equation required. ■

4. Find the Greens function G(x, x′) for the equation

d2y

dx2
− k2y = f(x)

for 0 ≤ x ≤ l, with y(0) = y(l) = 0.
Solution:
The green’s function solution to non homogenous differential equation Ly = f(x) is a solution to homogenous
part of the differential equation with the source part replaced as delta function Ly = δ(x−x′). The ontained
solution is G(x, x′), i.e., LG(x, x′) = δ(x− x′). This solution corresponds to the homogenous part only as it
is independent of any source term f(x).

d2

dx2
G(x, x′)− k2y = δ(x− x′); with G(0, x′) = 0; and G(l, x′) = 0 for all 0 ≤ x′ ≤ l (8)

Since delta function δ(x − x′) is zero everywhere except x = x′ we can find solution for two regions x < x′

and x > x′. For x < x′ let the solution to Ly = 0 be y1(x) and for x > x′ be y2(x) then

y′′1 (x)− k2y1(x) = 0; for x < x′; y′′2 (x)− k2y2(x) = 0; for x > x′

These are well known harmonic oscillator equations whose solution are

y1(x) = Asin(kx) +Bcos(kx); y2(x) = Csin(kx) +Dcos(kx)

By the boundary condition y1(0) = 0 and y2(l) = 0. These immediately imply that B = 0. Also since the
soution to the differential equation must be continuous y1(x

′) = y2(x
′). Also integrating Eq. (??) in the

vicinity of x′ we get

y′(x)

∣∣∣∣∣
x′
+

x′
−

−
�������*0 By contunity

k2
∫
ydx

∣∣∣∣x′
+

x′
−

=

∫ x′
+

x′
−

δ(x− x′)dx;⇒ y′(x′+)− y′(x′−) = 1

From three different conditions, (i) contunity at x′, (ii) y2(l) = 0 and (iii) y′1(x
′)−y′2(x′) = 1 we get following

three linear equations. Using there parameters we get.

Ck cos(kx′)−Dk sin(kx′)−Ak cos(kx′) = 1

C sin(kx′) +D cos(kx′)−A sin(kx′) = 0

C sin(kl) +D cos(kl) = 0

Which can be written in the matrix form and solved as.k cos (kx′) −k sin (kx′) −k cos (kx′)
sin (kx′) cos (kx′) − sin (kx′)
sin (kl) cos (kl) 0

CD
A

 =

10
0

⇒

CD
A

 =


sin (kx′)
k tan (kl)

− 1
k sin (kx′)

− sin (k(l−x′))
k sin (kl)
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Giving

C =
sin (kx′)

k tan (kl)
; D = −1

k
sin (kx′); A = − sin (k (l − x′))

k sin (kl)

So the required function is

G(x, x′) =

y1(x) = − sin (k(l−x′))
k sin (kl) sin(kx) if x < x′

y2(x) =
sin(kx′)

k

(
sin(kx)
tan(kl) − cos(kx)

)
if x > x′

(9)

Eq.(??) gives the Green’s function whcin can be used to find the solution to the differential equation

y(x) =

∫
G(x, x′)f(x′)dx′

The solution to the original inhomogenous differential equation can is given by the above expression in terms
of Green’s function. ■

5. Poissons equation (in three dimensions) is ∇2ϕ = 4πGρ

(a) Let ϕ̃(k⃗) be the fourier transforms of ϕ(x) and ρ(x), respectively show that:

ϕ̃ = −4πGρ̃

k2

and hence write down an integral expression for ϕ(x).
Solution:
Taking the fourier transform ov Poissons equation we have

4πGF(ρ(r)) =

∞∫
−∞

∇2ϕ(r)eik·rd3r

Wriging in cartesian coordinate system k⃗ = kxî+ ky ĵ + kz k̂ and r⃗ = xî+ yĵ + zk̂ we have

4πGρ̃(k⃗) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

ϕ(r⃗)

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
exkx+yky+zkzdxdydz

=

∞∫
−∞

∞∫
−∞

∞∫
−∞

ϕ(r⃗)
(
(ikx)

2 + (iky)
2 + (ikz)

2
)
eik⃗·r⃗dxdydz

= (−k2x − k2y − k2z)F(ϕ(r⃗)) = −
∣∣∣⃗k∣∣∣2 ϕ̃(k⃗);

⇒ ϕ̃(k⃗) = −4πGρ̃(k⃗)

k2

This gives the expression for the fourier transform for Poisson’s equation. This can be used to get the
expression of ϕ(x⃗) which is

ϕ(x⃗) =
4πG√
(2π)3

∞∫
−∞

1

k2
ρ̃(k⃗)e−ik⃗·r⃗d3k (10)

This is the expression for ϕ(x) which is the solution to Poisson’s equation. ■
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(b) For a point mass at the origin, ρ(x) = mδ(x). Use the above to determine the expression for ϕ(x)
Solution:
Taking the fourier transform of given density function

ρ̃(k) =

∞∫
−∞

mδ(r⃗)eik⃗·r⃗d3r = m; Integral of delta function is 1

Substuting this in Eq. (??) we get

ϕ(x⃗) =
4πG√
(2π)3

∞∫
−∞

m

k2
e−ik⃗·r⃗d3k =

4πGm√
(2π)3

∞∫
−∞

k−2e−ik⃗·r⃗d3k

This integral should give ϕ(x) = −Gm
x for x > 0 ■
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