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1. Use contour integration to compute the integral

I =

1∫
−1

dx

(a2 + x2)
√
1− x2

where a is real and the integrand has a branch cut running from −1 to 1. Sketch the contour you have
chosen and carefully justify your reasoning to evaluate or neglect each portion of the total integral.
Solution:
We can write the above integral as ∮

dz

(a2 + z2)
√
1− z2

1 − ε

∞

−1 + ε
× ×

×

Γ1

Γ2

Γ3

ia

Re(z)

Im(z)

Figure 1: There are poles at ±1 and ±ia .Since the function
is even the integral along two vertical lines will be equal and
opposite and vanish. The integral along the bottom horizontal
line is what we want, and the integral along the top horizontal
line will vanish because at large value of z; 1

(a2+z2)
√
1−z2

= 0. In
the closed contour integral only leaves the integral along the x
axis from −1 to 1.

∮
f(z)dz = I − 2πi

1

4
Res(1) +

∫
Γ1

f(z)dz +

∫
Γ2

f(z)dz +

∫
Γ3

f(z)dz − 2πi
1

4
Res(−1) (1)

Resf(−1) = lim
z→−1

− 1− z

(a2 + z2)
√
1− z2

= lim
z→−1

−
√
1− z

(a2 + z2)
√
1 + z

= 0

Resf(1) = lim
z→1

− 1 + z

(a2 + z2)
√
1− z2

= lim
z→1

√
1 + z

(a2 + z2)
√
1 + z

= 0
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The only terms left in the RHS of Eq. (1) is I

I =

∮
dz

(a2 + z2)
√
1− z2

= 2πiResf(ia)

= 2πi lim
z→ia

���z − ia

(z + ia)(���z − ia)
√
1− z2

=
2πi

2ia
√
1 + a2

=
π

a
√
1 + a2

So the required integral is
1∫

−1

dx
(a2+x2)

√
1−x2

= π
a
√
1+a2

. �

2. Work out the details of the contour integral in the context of quantum scattering problem. The problem
involves evaluating the integral

I(σ) =

∞∫
−∞

x sinxdx

x2 − σ2

The integrand has poles on the real axis, and so is only defined as a Cauchy Principal value, deforming the
path of integration to avoid the poles using small semicircles of radius ε centered on x = ±σ. State clearly
the assumptions you make and the contours you choose, and show that

I(σ) = π cosσ.

Solution:
There are two singular points at ±σ. If we write the function as

×
−σ

×σ
σ − ε σ + ε R−R −σ − ε −σ + ε Re(z)

Im(z)

Γε

ΓR

f(z) =
zeiz

z2 − σ2
; I(σ) = Im

[∮
f(z)dz

]
Taking this contour, the, integral along the big semicircular contour will go to zero by Jordan’s Lemma. The
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integral along the line includes two semicircular hops.

R∫
−R

f(z)dz =

�
�
�
���

−ξ

−σ−ε∫
−R

f(z)dz +

�
�
�
���

2πi 12Res(−σ)

−σ+ε∫
−σ−ε

f(z)dz +

�
�
�
���

0,

σ−ε∫
−σ+ε

f(z)dz +

�
�
�
���

2πi 12Res(σ)
σ+ε∫

σ−ε

f(z)dz +

�
�
�
���

ξ

σ−ε∫
−σ+ε

f(z)dz

=
2πi

2
(Res(−σ) + Res(σ))

=
2πi

2

[
lim

z→−σ

(
zeiz

z − σ

)
+ lim

z→−σ

(
zeiz

z + σ

)]
= πi

[(
−σe−iσ

−2σ

)
+

(
σeiσ

2σ

)]
= πi

[(
e−iσ

2

)
+

(
eiσ

2

)]
= πi cos(σ)

Our original integral was I(σ) = Im
[∮

f(z)dz
]
=Im[πi cos(σ)] = π cos(σ). �

3.(a) Find the series solution of the equation

(1− x2)y′′(x)− xy′(x) + n2y(x) = 0

that is regular at x = 0. Under what circumstances (for what values of n) does the series converge for all
x?
Solution:
Let the solution be y(x) =

∞∑
r=0

arx
r+k; where a0 6= 0. Then the first two derivatives are.

y′(x) =

∞∑
r=0

(r + k)arx
r+k−1; y′′(x) =

∞∑
r=0

(r + k)(r + k − 1)arx
r+k−2

Substuting these back into the given differential equation we get.

∞∑
r=0

(r + k)(r + k − 1)arx
r+k−2 −

∞∑
r=0

(r + k)(r + k − 1)arx
r+k −

∞∑
r=0

(r + k)arx
r+k +

∞∑
r=0

n2arx
r+k = 0

If we take out two terms from the summation sign in the first expression, we get

k(k − 1)a0x
k−2

+ k(k + 1)a1x
k−1

+
∞∑

r=2

(r + k)(r + k − 1)arx
r+k−2 −

∞∑
r=0

(r + k)(r + k − 1)arx
r+k −

∞∑
r=0

(r + k)arx
r+k

+
∞∑

r=0

n
2
arx

r+k
= 0

Since r is a dummy index
∞∑
r=2

(r+k)(r+k−1)arx
r+k−2 can be written as

∞∑
r=0

(r+k+2)(r+k+1)ar+2x
r+k

k(k − 1)a0x
k−2

+ k(k + 1)a1x
k−1

+
∞∑

r=0

[
(r + k + 2)(r + k + 1)ar+2 − (r + k)(r + k − 1)ar − (r + k)arx

r+k
+ n

2
ar

]
x
r+k

= 0

Since we are expecting solution that is to be true for everyvalue of x every coefficient of each xr+k should
go to zero. If it didn’t then we would have a polynomial of degree r + k which would give r + k solutions
for x and would not be true for any general x other then the solution to it.
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Equating the coefficient of xk−2 to zero we get k(k − 1)a0 = 0;⇒ k = {0, 1}.
If we choose k = 0 then the coefficient of xk−1 which is k(k+1)a1 goes to zero. So a1 can be any arbitrary
number. If we choose k = 1 then the coefficient of xk−1 which is k(k + 1)a1 = 0 requires that a1 = 0. So

a1 =

{
arbitrary if k = 0
0 if k = 1

Also the coefficient of xr+k should be zero for every value of r ≥ 0. Equating the coefficient of xr+k = 0
we get

(r + k + 2)(r + k + 1)ar+2 =
(
(r + k)2 − n2

)
ar; ⇒ ar+2 =

(r + k)2 − n2

(r + k + 2)(r + k + 1)
ar

for k = 0

ar+2 =
r2 − n2

(r + 2)(r + 1)
ar

a2 =
−n2

2!
a0

a3 =
1− n2

3!
a1

a4 =
22 − n2

4 · 3
a2 =

n2(n2 − 22)

4!
a0

a5 =
32 − n2

5 · 4
a1 =

(n2 − 1)(n2 − 32)

5!
a1

...
...

The solution then is

y0(x) = a0

{
1− n2

2!
x2 +

n2(n2 − 22)

4!
x4 + · · ·

}
+ a1

{
x− n2 − 1

3!
x3 +

(n2 − 32)(n2 − 1)

5!
x5 + · · ·

}

for k=1

ar+2 =
(r + 1)2 − n2

(r + 3)(r + 2)
ar; a1 = 0

a2 =
1− n2

3!
a0

a3 =
22 − n2

3!
a1 = 0

a4 =
32 − n2

5 · 4
a2 =

(n2 − 1)(n2 − 32)

5!
a0

a5 = 0

...
...

The solution then is

y1(x) = a0

{
x− n2 − 1

3!
x3 +

(n2 − 32)(n2 − 1)

5!
x5 + · · ·

}

The two solution obtained above are linearly dependent so, we will analyze convergence for the first solution.
y0(x) has a form of

y0(x) = a0{Even Function of x}+ a1{Odd Function of x}

Foe n = Even Integer, the Even function will be a nth degree polynoial and similarly for n being odd.
For the convergence of series, we get from the recurrence relation,

lim
r→∞

tr+2

tr
= lim

r→∞

ar+2

ar
x2 = lim

r→∞

r2 − n2

(r + 2)(r + 1)
x2 = x2

For convergence lim
r→∞

tr+2

tr
< 1 which implies that x2 < 1;⇒ |x| < 1 For this series to converge for all values

of x, the above ratio should be less than 1 for some value of n, but it doesn’t happen for any n. So the
series can’t be convergent for all values of x. �

(b) Find the series solution of the equation

4x2y′′ + (1− p2)y = 0
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Solution:
Let the solution be

∞∑
r=0

arx
r+k where a 6= 0. The Second derivative is

y′(x) =

∞∑
r=0

(r + k)arx
r+k−1; y′′(x) =

∞∑
r=0

(r + k)(r + k − 1)arx
r+k−2

Substuting these back into the given differential equation we get.

∞∑
r=0

4(r + k)(r + k − 1)arx
r+k +

∞∑
r=0

(1− p2)arx
r+k = 0; ⇒

∞∑
r=0

[
4(r + k)(r + k − 1)ar + (1− p2)ar

]
xr+k = 0

Since we seek the solution of differential equation which is true for every value of x, it requires that every
coefficient of xr+k vanish. {

4(r + k)(r + k − 1) + (1− p2)
}
ar = 0; for r ≥ 0

Since we suppose a0 6= 0,

4(k + r)(k + r − 1) + (1− p2) = 0;⇒ 4(k + r)2 − 4(k + r) + (1− p2) = 0;

The solution to the quadratic equation in k has the solution

k + r =
4±

√
42 − 4 · 4(1− p2)

2 · 4
; ⇒ k + r =

1

2
(1± p)

Putting back the value of x+ r in our original solution we get,

y(x) =
∞∑
r=0

arx
r+k =

∞∑
r=0

arx
1
2 [1±p] =

( ∞∑
r=0

ar

)
x

1
2 [1±p] = ξx

1
2 [1±p]; Where ξ =

∞∑
r=0

ar(Constant)

So the two independent solution for the equation are y(x) = ξ1x
1
2 (1+p) and y(x) = ξ2x

1
2 (1−p). �

(c) Given the one solution of the differential equation

y′′ − 2xy′ = 0

is y(x) = 1, use the Wronskian development to find a second, linearly independent solution. Describe the
behavior near x = 0
Solution:
Comparing with y′′ + p(x)y′ + q(x)y = 0, p(x) = −2x So,∫

p(x)dx = −x2

We have y1(x) = 1. The second solution is

y2(x) = y1(x)

∫
e−

∫
p(x)dx

y1(x)2
=

∫
ex

2

dx

=

∫ [
1 +

x2

1!
+

x4

2!
+ · · ·

]
dx

= x+
x3

3
+

x5

10
+

x7

42
+ · · ·

The function is well defined near x = 0. �
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4. A function f(x) is periodic with period 2π, and can be written as a polynomial P (x) for −π < x < a and
as a polynomial Q(x) for a < x < π. Show that the Fourier coefficients cn of f go to zero at least as fast as
1/n2 as n → ∞if P (a) = Q(a) and P (π) = Q(π) (i.e. f is continuous), but only as 1/n otherwise.
Solution:
The fourier coefficeent is given by.

cn =

∫
f(x)e−inxdx =

a∫
−π

P (x)e−inxdx+

π∫
a

Q(x)e−inxdx

Integrating by parts

cn =

[
P (x)

e−inx

−in

]a
−π

+

[
Q(x)

e−inx

−in

]π
a

+

∫
P ′(x)

e−inx

in
+

∫
Q′(x)

e−inx

in

=
1

n

(P (a)−Q(a))e−ina +
������������: (Q(π)− P (−π)) cos(nπ))

(Q(π)e−inπ − P (−π)einπ)

+

∫
P ′(x)

e−inx

in
+

∫
Q′(x)

e−inx

in

=
1

n

[
(P (a)−Q(a))e−ina + (Q(π)− P (−π)) cos(nπ))

]
+

∫
P ′(x)

e−inx

in
+

∫
Q′(x)

e−inx

in

If we continue on this way.

cn =
1

n

[
(P (a)−Q(a))e−ia + (Q(π)− P (−π)) cos(nπ))

]
+

1

n2

[
(P ′(a)−Q′(a))e−ia + (Q′(π)− P ′(−π)) cos(nπ))

]
+ · · ·+ 1

nr+1

∫
P (r)(x)

e−inx

in
+

∫
Q(r)(x)

e−inx

in
(2)

Let the order of polynomials P (x) and Q(x) be k1 and k2 respectively, are polynomials the derivatives will
terminate when r > max{k1, k2} We will then have a expression for cn which is a polynomial of 1

n

If P (a) = Q(a) and P (−π) = Q(π) the first term of the Eq. (2) will vanish and cn goes at least as 1
n2 . It can

go faster to zero if also the derivatives are equal then second term goes away. If the function do not agree
at the boundaries then the first term of the cn does not vanish and cn goes only as fast as 1

n . �

5.(a) Find the Fourier series
∑∞

n=1 bn sin(nπx) for −1 < x < 1 for the sawtooth function

f(x) =

{
−1− x (−1 < x < 0)
1− x ( 0 < x < 1)

(3)

Solution:
The period of the function is T = 2, The fourier coefficient can be calculated as

bn =
2

T

∫
f(x)sin(nπx) = −

0∫
−1

(1 + x) sin(nπx)dx+

1∫
0

(1− x) sin(nπx)dx

= −
[
− 1

nπ
+

cos(nπ)

nπ

]
+

[
1

nπ
+

cos(nπ)

nπ

]
=

2

nπ

So the series solution is f(x) =
∑∞

n=1
2
nπ sin(nπx). �
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(b) Plot the partial sums SN (x) =
∑N

n=1 bn sin(nπx) of the series for 0 ≤ x ≤ 1, in steps of δx = 0.0005, and
N = 1, 5, 10, 20, 50, 100 and 500. What is the maximum overshoot of Fourier series in the case N = 500,
and at what value of x does it occur?
Solution:
The maximum overshoot for N = 500 occurs at x = 0.0020 and the value of overshoot is 0.1790. �

Figure 2: Partial Fourier series plot for Eq.(3) (
∑N

n=1 bn sin(nπx)) for different N with Max overshoot of
Om at xs
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